1 resultado para HMG-Box Domains
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archive of European Integration (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (57)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (47)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (25)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (1)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (4)
- DigitalCommons@The Texas Medical Center (24)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Harvard University (1)
- Instituto Gulbenkian de Ciência (2)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (14)
- National Center for Biotechnology Information - NCBI (204)
- Publishing Network for Geoscientific & Environmental Data (121)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (20)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (1)
- Universidade Federal do Pará (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (71)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (3)
- University of Michigan (88)
- University of Queensland eSpace - Australia (43)
- University of Southampton, United Kingdom (4)
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.