3 resultados para Gregoire, Timothy G.: Sampling methods for multiresource forest inventory

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evaluation of major feed resources was conducted in four crop-livestock mixed farming systems of central southern Ethiopia, with 90 farmers, selected using multi-stage purposive and random sampling methods. Discussions were held with focused groups and key informants for vernacular name identification of feed, followed by feed sampling to analyse chemical composition (CP, ADF and NDF), in-vitro dry matter digestibility (IVDMD), and correlate with indigenous technical knowledge (ITK). Native pastures, crop residues (CR) and multi-purpose trees (MPT) are the major feed resources, demonstrated great variations in seasonality, chemical composition and IVDMD. The average CP, NDF and IVDMD values for grasses were 83.8 (ranged: 62.9–190), 619 (ranged: 357–877) and 572 (ranged: 317–743) g kg^(−1) DM, respectively. Likewise, the average CP, NDF and IVDMD for CR were 58 (ranged: 20–90), 760 (ranged: 340–931) and 461 (ranged: 285–637)g kg^(−1) DM, respectively. Generally, the MPT and non-conventional feeds (NCF, Ensete ventricosum and Ipomoea batatas) possessed higher CP (ranged: 155–164 g kg^(−1) DM) and IVDMD values (611–657 g kg^(−1) DM) while lower NDF (331–387 g kg^(−1) DM) and ADF (321–344 g kg^(−1) DM) values. The MPT and NCF were ranked as the best nutritious feeds by ITK while crop residues were the least. This study indicates that there are remarkable variations within and among forage resources in terms of chemical composition. There were also complementarities between ITK and feed laboratory results, and thus the ITK need to be taken into consideration in evaluation of local feed resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 21st century has brought new challenges for forest management at a time when globalization in world trade is increasing and global climate change is becoming increasingly apparent. In addition to various goods and services like food, feed, timber or biofuels being provided to humans, forest ecosystems are a large store of terrestrial carbon and account for a major part of the carbon exchange between the atmosphere and the land surface. Depending on the stage of the ecosystems and/or management regimes, forests can be either sinks, or sources of carbon. At the global scale, rapid economic development and a growing world population have raised much concern over the use of natural resources, especially forest resources. The challenging question is how can the global demands for forest commodities be satisfied in an increasingly globalised economy, and where could they potentially be produced? For this purpose, wood demand estimates need to be integrated in a framework, which is able to adequately handle the competition for land between major land-use options such as residential land or agricultural land. This thesis is organised in accordance with the requirements to integrate the simulation of forest changes based on wood extraction in an existing framework for global land-use modelling called LandSHIFT. Accordingly, the following neuralgic points for research have been identified: (1) a review of existing global-scale economic forest sector models (2) simulation of global wood production under selected scenarios (3) simulation of global vegetation carbon yields and (4) the implementation of a land-use allocation procedure to simulate the impact of wood extraction on forest land-cover. Modelling the spatial dynamics of forests on the global scale requires two important inputs: (1) simulated long-term wood demand data to determine future roundwood harvests in each country and (2) the changes in the spatial distribution of woody biomass stocks to determine how much of the resource is available to satisfy the simulated wood demands. First, three global timber market models are reviewed and compared in order to select a suitable economic model to generate wood demand scenario data for the forest sector in LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) is most suitable for obtaining projections on future roundwood harvests for further study with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to simulate wood demands for the global forestry sector conditional on selected scenarios from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is utilized to simulate the change in potential vegetation carbon stocks for the forested locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit forest inventory data on aboveground biomass to allocate the demands for raw forest products and identify locations of deforestation. Using the previous results as an input, a methodology to simulate the spatial dynamics of forests based on wood extraction is developed within the LandSHIFT framework. The land-use allocation procedure specified in the module translates the country level demands for forest products into woody biomass requirements for forest areas, and allocates these on a five arc minute grid. In a first version, the model assumes only actual conditions through the entire study period and does not explicitly address forest age structure. Although the module is in a very preliminary stage of development, it already captures the effects of important drivers of land-use change like cropland and urban expansion. As a first plausibility test, the module performance is tested under three forest management scenarios. The module succeeds in responding to changing inputs in an expected and consistent manner. The entire methodology is applied in an exemplary scenario analysis for India. A couple of future research priorities need to be addressed, particularly the incorporation of plantation establishments; issue of age structure dynamics; as well as the implementation of a new technology change factor in the GFPM which can allow the specification of substituting raw wood products (especially fuelwood) by other non-wood products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research is a study about knowledge interface that aims to analyse knowledge discontinuities, the dynamic and emergent characters of struggles and interactions within gender system and ethnicity differences. The cacao boom phenomenon in Central Sulawesi is the main context for a changing of social relations of production, especially when the mode of production has shifted or is still underway from subsistence to petty commodity production. This agrarian change is not only about a change of relationship and practice, but, as my previous research has shown, also about the shift of knowledge domination, because knowledge construes social practice in a dialectical process. Agroecological knowledge is accumulated through interaction, practice and experience. At the same time the knowledge gained from new practices and experiences changes mode of interaction, so such processes provide the arena where an interface of knowledge is manifested. In the process of agro-ecological knowledge interface, gender and ethnic group interactions materialise in the decision-making of production and resource allocation at the household and community level. At this point, power/knowledge is interplayed to gain authority in decision-making. When authority dominates, power encounters resistance, whereas the dominant power and its resistance are aimed to ensure socio-economic security. Eventually, the process of struggle can be identified through the pattern of resource utilisation as a realisation of production decision-making. Such processes are varied from one community to another, and therefore, it shows uniqueness and commonalities, especially when it is placed in a context of shifting mode of production. The focus is placed on actors: men and women in their institutional and cultural setting, including the role of development agents. The inquiry is informed by 4 major questions: 1) How do women and men acquire, disseminate, and utilise their agro ecological knowledge, specifically in rice farming as a subsistence commodity, as well as in cacao farming as a petty commodity? How and why do such mechanisms construct different knowledge domains between two genders? How does the knowledge mechanism apply in different ethnics? What are the implications for gender and ethnicity based relation of production? ; 2) Using the concept of valued knowledge in a shifting mode of production context: is there any knowledge that dominates others? How does the process of domination occur and why? Is there any form of struggle, strategies, negotiation, and compromise over this domination? How do these processes take place at a household as well as community level? How does it relate to production decision-making? ; 3) Putting the previous questions in two communities with a different point of arrival on a path of agricultural commercialisation, how do the processes of struggle vary? What are the bases of the commonalities and peculiarities in both communities?; 4) How the decisions of production affect rice field - cacao plantation - forest utilisation in the two villages? How does that triangle of resource use reflect the constellation of local knowledge in those two communities? What is the implication of this knowledge constellation for the cacao-rice-forest agroecosystem in the forest margin area? Employing a qualitative approach as the main method of inquiry, indepth and dialogic interviews, participant observer role, and document review are used to gather information. A small survey and children’s writing competition are supplementary to this data collection method. The later two methods are aimed to give wider information on household decision making and perception toward the forest. It was found that local knowledge, particularly knowledge pertaining to rice-forest-cacao agroecology is divided according to gender and ethnicity. This constellation places a process of decision-making as ‘the arena of interface’ between feminine and masculine knowledge, as well as between dominant and less dominant ethnic groups. Transition from subsistence to a commercial mode of production is a context that frames a process where knowledge about cacao commodity is valued higher than rice. Market mechanism, as an external power, defines valued knowledge. Valued knowledge defines the dominant knowledge holder, and decision. Therefore, cacao cultivation becomes a dominant practice. Its existence sacrifices the presence of rice field and the forest. Knowledge about rice production and forest ecosystem exist, but is less valued. So it is unable to challenge the domination of cacao. Various forms of struggles - within gender an ethnicity context - to resist cacao domination are an expression of unequal knowledge possession. Knowledge inequality implies to unequal access to withdraw benefit from market valued crop. When unequal knowledge fails to construct a negotiated field or struggles fail to reveal ‘marginal’ decision, e.g. intensification instead of cacao expansion to the forest, interface only produces divergence. Gender and ethnicity divided knowledge is unabridged, since negotiation is unable to produce new knowledge that accommodates both interests. Rice is loaded by ecological interest to conserve the forest, while cacao is driven by economic interest to increase welfare status. The implication of this unmediated dominant knowledge of cacao production is the construction of access; access to the forest, mainly to withdraw its economic benefit by eliminating its ecological benefit. Then, access to cacao as the social relationship of production to acquire cacao knowledge; lastly, access to defend sustainable benefit from cacao by expansion. ‘Socio-economic Security’ is defined by Access. The convergence of rice and cacao knowledge, however, should be made possible across gender and ethnicity, not only for the sake of forest conservation as the insurance of ecological security, but also for community’s socio-economic security. The convergence might be found in a range of alternative ways to conduct cacao sustainable production, from agroforestry system to intensification.