3 resultados para Global change and terrestrial ecosystems
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In the last decades, there has been a growing tendency towards international trade and globalisation, particularly leading to a significant increase in flows of agricultural commodities worldwide. From a macroeconomic perspective, the commodity projections are more optimistic than the previous years and the long run tendency shows an increasing demand for feedstock. However, the strong shifts of shocks and fluctuations (in terms of prices and volumes) are a concern to global food security, with the number of hungry people rising to nearly one billion. Agriculture is a main user of natural resources, and it has a strong link with rural societies and the environment. Forecasted impacts from climate change, limited productive endorsements and emerging rivals on crop production, such bio-energy, aggravate the panorama on food scarcity. In this context, it is a great challenge on farming and food systems to reduce global hunger and produce in sustainable ways adequate supplies for food, feed, and non-food uses. The main objective of this work is to question the sustainability of food and agriculture systems. It is particularly interesting to know its role and if it will be able to respond to a growing population with increasing food demand in a world where pressure on land, water and other natural resources are already evident, and, moreover, climate change will also condition and impact the outcome. Furthermore, a deeper focus will be set on developing countries, which are expected to emerge and take a leading role in the international arena. This short paper is structured as follows: Section I, “Introduction”, describes the social situation regarding hunger, Section II, “Global Context”, attempts to summarise the current scenario in the international trading scheme and present the emerging rivals for primary resources, and in Section III, “Climate Change”, presents an overview of possible changes in the sector and future perspectives in the field. Finally, in Section IV, “Conclusion”, the main conclusions are presented.
Resumo:
Worldwide water managers are increasingly challenged to allocate sufficient and affordable water supplies to different water use sectors without further degrading river ecosystems and their valuable services to mankind. Since 1950 human population almost tripled, water abstractions increased by a factor of four, and the number of large dam constructions is about eight times higher today. From a hydrological perspective, the alteration of river flows (temporally and spatially) is one of the main consequences of global change and further impairments can be expected given growing population pressure and projected climate change. Implications have been addressed in numerous hydrological studies, but with a clear focus on human water demands. Ecological water requirements have often been neglected or addressed in a very simplistic manner, particularly from the large-scale perspective. With his PhD thesis, Christof Schneider took up the challenge to assess direct (dam operation and water abstraction) and indirect (climate change) impacts of human activities on river flow regimes and evaluate the consequences for river ecosystems by using a modeling approach. The global hydrology model WaterGAP3 (developed at CESR) was applied and further developed within this thesis to carry out several model experiments and assess anthropogenic river flow regime modifications and their effects on river ecosystems. To address the complexity of ecological water requirements the assessment is based on three main ideas: (i) the natural flow paradigm, (ii) the perception that different flows have different ecological functions, and (iii) the flood pulse concept. The thesis shows that WaterGAP3 performs well in representing ecologically relevant flow characteristics on a daily time step, and therefore justifies its application within this research field. For the first time a methodology was established to estimate bankfull flow on a 5 by 5 arc minute grid cell raster globally, which is a key parameter in eFlow assessments as it marks the point where rivers hydraulically connect to adjacent floodplains. Management of dams and water consumption pose a risk to floodplains and riparian wetlands as flood volumes are significantly reduced. The thesis highlights that almost one-third of 93 selected Ramsar sites are seriously affected by modified inundation patterns today, and in the future, inundation patterns are very likely to be further impaired as a result of new major dam initiatives and climate change. Global warming has been identified as a major threat to river flow regimes as rising temperatures, declining snow cover, changing precipitation patterns and increasing climate variability are expected to seriously modify river flow regimes in the future. Flow regimes in all climate zones will be affected, in particular the polar zone (Northern Scandinavia) with higher river flows during the year and higher flood peaks in spring. On the other side, river flows in the Mediterranean are likely to be even more intermittent in the future because of strong reductions in mean summer precipitation as well as a decrease in winter precipitation, leading to an increasing number of zero flow events creating isolated pools along the river and transitions from lotic to lentic waters. As a result, strong impacts on river ecosystem integrity can be expected. Already today, large amounts of water are withdrawn in this region for agricultural irrigation and climate change is likely to exacerbate the current situation of water shortages.
Resumo:
Based on a case study of Charazani – Bolivia, this article outlines the understanding of adaptive strategies to cope with climate change and its impact on environmental and socioeconomic conditions that are affecting rural livelihoods. Mainly qualitative methods were used to collect and analyze data following the framework for vulnerability assessments of a socio-ecological system. Climate data reveals an increase of precipitation and temperature during the last decades. Furthermore the occurrence of extreme weather events, particularly drought, frost, hailstorms and consequently landslides and fire are increasing. Local testimonies highlight these events as the principle reasons for agricultural losses. This climatic variability and simultaneous social changes were identified as the drivers of vulnerability. Yet, several adaptive measures were identified at household, community and external levels in order to cope with such vulnerability; e.g. traditional techniques in agriculture and risk management. Gradually, farmers complement these activities with contemporary practices in agriculture, like intensification of land use, diversification of irrigation system and use of artificial fertilizers. As part of a recent trend community members are forced to search for new off-farm alternatives beyond agriculture for subsistence. Despite there is a correspondingly large array of possible adaptation measures that families are implementing, local testimonies point out, that farmers often do not have the capacity and neither the economical resources to mitigate the risk in agricultural production. Although several actions are already considered to promote further adaptive capacity, the current target is to improve existing livelihood strategies by reducing vulnerability to hazards induced by climate change.