17 resultados para Generalization Problem
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This paper re-addresses the issue of a lacking genuine design research paradigm. It tries to sketch an operational model of such a paradigm, based upon a generic design process model, which is derived from basic notions of evolution and learning in different domains of knowing (and turns out to be not very different from existing ones). It does not abandon the scientific paradigm but concludes that the latter has to be embedded into / subordinated under a design paradigm.
Resumo:
Student’s t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.
Resumo:
In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.
Resumo:
Quasi-molecular X-rays observed in heavy ion collisions are interpreted within a relativistic calculation of correlation diagrams using the Dirac-Slater model. A semiquantitative description of noncharacteristic M X rays is given for the system Au-I.
Resumo:
The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.
Resumo:
The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning (applied) problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.
Resumo:
'The problem of the graphic artist' is a small example of applying elementary mathematics (divisibility of natural numbers) to a real problem which we ourselves have actually experienced. It deals with the possibilities for partitioning a sheet of paper into strips. In this contribution we report on a teaching unit in grade 6 as well as on informal tests with students in school and university. Finally we analyse this example methodologically, summarise our observations with pupils and students, and draw some didactical conclusions.
Resumo:
In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.
Resumo:
Cubicle should provide good resting comfort as well as clean udders. Dairy cows in cubicle houses often face a restrictive environment with regard to resting behaviour, whereas cleanliness may still be impaired. This study aimed to determine reliable behavioural measures regarding resting comfort applicable in on-farm welfare assessments. Furthermore, relationships between cubicle design, cow sizes, management factors and udder cleanliness (namely teats and teat tips) were investigated. Altogether 15 resting measures were examined in terms of feasibility, inter-observer reliability (IOR) and consistency of results per farm over time. They were recorded during three farm visits on farms in Germany and Austria with cubicle, deep litter and tie stall systems. Seven measures occurred to infrequently to allow reliable recording within a limited observation time. IOR was generally acceptable to excellent except for 'collisions during lying down', which only showed good IOR after improvement of the definition. Only three measures were acceptably repeatable over time: 'duration of lying down', 'percentage of collisions during lying down' and 'percentage of cows lying partly or completely outside lying area'. These measures were evaluated as suitable animal based welfare measures regarding resting behaviour in the framework of an on-farm welfare assessment protocol. The second part of the thesis comprises a cross-sectional study on resting comfort and cow cleanliness including 23 Holstein Friesian dairy herds with very low within-farm variation in cubicle measures. Height at withers, shoulder width and diagonal body length were measured in 79-100 % of the cows (herd size 30 to115 cows). Based on the 25 % largest animals, compliance with recommendations for cubicle measures was calculated. Cleanliness of different body parts, the udder, teats and teat tips was assessed for each cow in the herd prior to morning milking. No significant correlation was found between udder soiling and teat or teat tip soiling on herd level. The final model of a stepwise regression regarding the percentage of dirty teats per farm explained 58.5 % the variance and contained four factors. Teat dipping after milking which might be associated with an overall clean and accurate management style, deep bedded cubicles, increasing cubicle maintenance times and decreasing compliance concerning total cubicle length predicted lower teat soiling. The final model concerning teat tip soiling explained 46.0 % of the variance and contained three factors. Increasing litter height in the rear part of the cubicle and increased alley soiling which is difficult to explain, predicted for less soiled teat tips, whereas increasing compliance concerning resting length was associated with higher percentages of dirty teat tips. The dependent variable ‘duration of lying down’ was analysed using again stepwise regression. The final model explained 54.8 % of the total variance. Lying down duration was significantly shorter in deep bedded cubicles. Further explanatory though not significant factors in the model were neck-rail height, deep bedding or comfort mattresses versus concrete floor or rubber mats and clearance height of side partitions. In the attempt to create a more comprehensive lying down measure, another analysis was carried out with percentage of ‘impaired lying down’ (i.e. events exceeding 6.3 seconds, with collisions or being interrupted) as dependent variable. The explanatory value of this final model was 41.3 %. An increase in partition length, in compliance concerning cubicle width and the presence of straw within bedding predicted a lower proportion of impaired lying down. The effect of partition length is difficult to interpret, but partition length and height were positively correlated on the study farms, possibly leading to a bigger zone of clear space for pelvis freedom. No associations could be found between impaired lying down and teat or teat tip soiling. Altogether, in agreement with earlier studies it was found that cubicle dimensions in practice are often inadequate with regard to the body dimensions of the cows, leading to high proportions of impaired lying down behaviour, whereas teat cleanliness is still unsatisfactory. Connections between cleanliness and cow comfort are far from simplistic. Especially the relationship between cubicle characteristics and lying down behaviour apparently is very complex, so that it is difficult to identify single influential factors that are valid for all farm situations. However, based on the results of the present study the use of deep bedded cubicles can be recommended as well as improved management with special regard to cubicle and litter maintenance in order to achieve both better resting comfort and teat cleanliness.