7 resultados para Galois Cohomology

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bei der Bestimmung der irreduziblen Charaktere einer Gruppe vom Lie-Typ entwickelte Lusztig eine Theorie, in der eine sogenannte Fourier-Transformation auftaucht. Dies ist eine Matrix, die nur von der Weylgruppe der Gruppe vom Lie-Typ abhängt. Anhand der Eigenschaften, die eine solche Fourier- Matrix erfüllen muß, haben Geck und Malle ein Axiomensystem aufgestellt. Dieses ermöglichte es Broue, Malle und Michel füur die Spetses, über die noch vieles unbekannt ist, Fourier-Matrizen zu bestimmen. Das Ziel dieser Arbeit ist eine Untersuchung und neue Interpretation dieser Fourier-Matrizen, die hoffentlich weitere Informationen zu den Spetses liefert. Die Werkzeuge, die dabei entstehen, sind sehr vielseitig verwendbar, denn diese Matrizen entsprechen gewissen Z-Algebren, die im Wesentlichen die Eigenschaften von Tafelalgebren besitzen. Diese spielen in der Darstellungstheorie eine wichtige Rolle, weil z.B. Darstellungsringe Tafelalgebren sind. In der Theorie der Kac-Moody-Algebren gibt es die sogenannte Kac-Peterson-Matrix, die auch die Eigenschaften unserer Fourier-Matrizen besitzt. Ein wichtiges Resultat dieser Arbeit ist, daß die Fourier-Matrizen, die G. Malle zu den imprimitiven komplexen Spiegelungsgruppen definiert, die Eigenschaft besitzen, daß die Strukturkonstanten der zugehörigen Algebren ganze Zahlen sind. Dazu müssen äußere Produkte von Gruppenringen von zyklischen Gruppen untersucht werden. Außerdem gibt es einen Zusammenhang zu den Kac-Peterson-Matrizen: Wir beweisen, daß wir durch Bildung äußerer Produkte von den Matrizen vom Typ A(1)1 zu denen vom Typ C(1) l gelangen. Lusztig erkannte, daß manche seiner Fourier-Matrizen zum Darstellungsring des Quantendoppels einer endlichen Gruppe gehören. Deswegen ist es naheliegend zu versuchen, die noch ungeklärten Matrizen als solche zu identifizieren. Coste, Gannon und Ruelle untersuchen diesen Darstellungsring. Sie stellen eine Reihe von wichtigen Fragen. Eine dieser Fragen beantworten wir, nämlich inwieweit rekonstruiert werden kann, zu welcher endlichen Gruppe gegebene Matrizen gehören. Den Darstellungsring des getwisteten Quantendoppels berechnen wir für viele Beispiele am Computer. Dazu müssen unter anderem Elemente aus der dritten Kohomologie-Gruppe H3(G,C×) explizit berechnet werden, was bisher anscheinend in noch keinem Computeralgebra-System implementiert wurde. Leider ergibt sich hierbei kein Zusammenhang zu den von Spetses herrührenden Matrizen. Die Werkzeuge, die in der Arbeit entwickelt werden, ermöglichen eine strukturelle Zerlegung der Z-Ringe mit Basis in bekannte Anteile. So können wir für die meisten Matrizen der Spetses Konstruktionen angeben: Die zugehörigen Z-Algebren sind Faktorringe von Tensorprodukten von affinen Ringe Charakterringen und von Darstellungsringen von Quantendoppeln.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of the relevance and the usefulness of extracted association rules is of primary importance because, in the majority of cases, real-life databases lead to several thousands association rules with high confidence and among which are many redundancies. Using the closure of the Galois connection, we define two new bases for association rules which union is a generating set for all valid association rules with support and confidence. These bases are characterized using frequent closed itemsets and their generators; they consist of the non-redundant exact and approximate association rules having minimal antecedents and maximal consequences, i.e. the most relevant association rules. Algorithms for extracting these bases are presented and results of experiments carried out on real-life databases show that the proposed bases are useful, and that their generation is not time consuming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sei $N/K$ eine galoissche Zahlkörpererweiterung mit Galoisgruppe $G$, so dass es in $N$ eine Stelle mit voller Zerlegungsgruppe gibt. Die vorliegende Arbeit beschäftigt sich mit Algorithmen, die für das gegebene Fallbeispiel $N/K$, die äquivariante Tamagawazahlvermutung von Burns und Flach für das Paar $(h^0(Spec(N), \mathbb{Z}[G]))$ (numerisch) verifizieren. Grob gesprochen stellt die äquivariante Tamagawazahlvermutung (im Folgenden ETNC) in diesem Spezialfall einen Zusammenhang her zwischen Werten von Artinschen $L$-Reihen zu den absolut irreduziblen Charakteren von $G$ und einer Eulercharakteristik, die man in diesem Fall mit Hilfe einer sogenannten Tatesequenz konstruieren kann. Unter den Voraussetzungen 1. es gibt eine Stelle $v$ von $N$ mit voller Zerlegungsgruppe, 2. jeder irreduzible Charakter $\chi$ von $G$ erfüllt eine der folgenden Bedingungen 2a) $\chi$ ist abelsch, 2b) $\chi(G) \subset \mathbb{Q}$ und $\chi$ ist eine ganzzahlige Linearkombination von induzierten trivialen Charakteren; wird ein Algorithmus entwickelt, der ETNC für jedes Fallbeispiel $N/\mathbb{Q}$ vollständig beweist. Voraussetzung 1. erlaubt es eine Idee von Chinburg ([Chi89]) umzusetzen zur algorithmischen Berechnung von Tatesequenzen. Dabei war es u.a. auch notwendig lokale Fundamentalklassen zu berechnen. Im höchsten zahm verzweigten Fall haben wir hierfür einen Algorithmus entwickelt, der ebenfalls auf den Ideen von Chinburg ([Chi85]) beruht, die auf Arbeiten von Serre [Ser] zurück gehen. Für nicht zahm verzweigte Erweiterungen benutzen wir den von Debeerst ([Deb11]) entwickelten Algorithmus, der ebenfalls auf Serre's Arbeiten beruht. Voraussetzung 2. wird benötigt, um Quotienten aus den $L$-Werten und Regulatoren exakt zu berechnen. Dies gelingt, da wir im Fall von abelschen Charakteren auf die Theorie der zyklotomischen Einheiten zurückgreifen können und im Fall (b) auf die analytische Klassenzahlformel von Zwischenkörpern. Ohne die Voraussetzung 2. liefern die Algorithmen für jedes Fallbeispiel $N/K$ immer noch eine numerische Verifikation bis auf Rechengenauigkeit. Den Algorithmus zur numerischen Verifikation haben wir für $A_4$-Erweiterungen über $\mathbb{Q}$ in das Computeralgebrasystem MAGMA implementiert und für 27 Erweiterungen die äquivariante Tamagawazahlvermutung numerisch verifiziert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit werden Algorithmen zur Untersuchung der äquivarianten Tamagawazahlvermutung von Burns und Flach entwickelt. Zunächst werden Algorithmen angegeben mit denen die lokale Fundamentalklasse, die globale Fundamentalklasse und Tates kanonische Klasse berechnet werden können. Dies ermöglicht unter anderem Berechnungen in Brauergruppen von Zahlkörpererweiterungen. Anschließend werden diese Algorithmen auf die Tamagawazahlvermutung angewendet. Die Epsilonkonstantenvermutung kann dadurch für alle Galoiserweiterungen L|K bewiesen werden, bei denen L in einer Galoiserweiterung E|Q vom Grad kleiner gleich 15 eingebettet werden kann. Für die Tamagawazahlvermutung an der Stelle 1 wird ein Algorithmus angegeben, der die Vermutung für ein gegebenes Fallbeispiel L|Q numerischen verifizieren kann. Im Spezialfall, dass alle Charaktere rational oder abelsch sind, kann dieser Algorithmus die Vermutung für L|Q sogar beweisen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse  problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.   In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear differential equations where the coefficients are differential polynomials in $l$ differential indeterminates over an algebraically closed field of constants $C$, i.e. our differential ground field is purely differential transcendental over the constants.   For the groups of type $A_l$, $B_l$, $C_l$, $D_l$ and $G_2$ we managed to do these realizations at the same time in terms of Abhyankar's program 'Nice Equations for Nice Groups'. Here the choice of the defining matrix is important. We found out that an educated choice of $l$ negative roots for the parametrization together with the positive simple roots leads to a nice differential equation and at the same time defines a sufficiently general element of the Lie algebra. Unfortunately for the groups of type $F_4$ and $E_6$ the linear differential equations for such elements are of enormous length. Therefore we keep in the case of $F_4$ and $E_6$ the defining matrix differential equation which has also an easy and nice shape.   The basic idea for the realization is the application of an upper and lower bound criterion for the differential Galois group to our parameter equations and to show that both bounds coincide. An upper and lower bound criterion can be found in literature. Here we will only use the upper bound, since for the application of the lower bound criterion an important condition has to be satisfied. If the differential ground field is $C_1$, e.g., $C(z)$ with standard derivation, this condition is automatically satisfied. Since our differential ground field is purely differential transcendental over $C$, we have no information whether this condition holds or not.   The main part of this thesis is the development of an alternative lower bound criterion and its application. We introduce the specialization bound. It states that the differential Galois group of a specialization of the parameter equation is contained in the differential Galois group of the parameter equation. Thus for its application we need a differential equation over $C(z)$ with given differential Galois group. A modification of a result from Mitschi and Singer yields such an equation over $C(z)$ up to differential conjugation, i.e. up to transformation to the required shape. The transformation of their equation to a specialization of our parameter equation is done for each of the above groups in the respective transformation lemma.