7 resultados para GLOBULAR CLUSTERS: INDIVIDUAL: SEGUE 3

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The size dependence of the ionization potential I_p(n) of van der Waals (vdW) bound clusters has been calculated by using a model Hamiltonian, which includes electron hopping, vdW interactions, and charge-dipole interactions. The charge-density and dipole-density distributions for both neutral and ionized n-atom clusters are determined self-consistently. The competition between the polarization energy of the neutral atoms surrounding a partially localized hole and the tendency toward hole delocalization in the ionized clusters is found to dominate the size dependence of I_p(n). To test our theory, we culculate I_p(Xe_n) and I_p(Kr_n) for n \le 300. Good quantitative agreement with experiment is obtained. The theory is also applied to calculate I_p(Hg_n). Comparison with experiments suggests that in Hg_n^+ clusters with n \le 20 the positive charge is mainly distributed within a trimer which is situated at the center of the cluster and which polarizes the n - 3 surrounding neutral atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a theory which permits for the first time a detailed analysis of the dependence of the absorption spectrum on atomic structure and cluster size. Thus, we determine the development of the collective excitations in small clusters and show that their broadening depends sensitively on the tomic structure, in particular at the surface. Results for Hg_n^+ clusters show that the plasmon energy is close to its jellium value in the case of spherical-like structures, but is in general between w_p/ \wurzel{3} and w_p/ \wurzel{2} for compact clusters. A particular success of our theory is the identification of the excitations contributing to the absorption peaks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized. Hg_n clusters, we determine the size dependence of the bond character and the ionization potential I_p(n). For neutral Hg_n clusters we obtain a transition from van del Waals to covalent behaviour at the critical size n_c ~ 10-20 atoms. Results for I_p(Hg_n) with n \le 20 are in good agreement with experiments, and suggest that small Hg_n^+ clusters can be viewed as consisting of a positive trimer core Hg_3^+ surrounded by n - 3 polarized neutral atoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The real-time dynamics of Na_n (n=3-21) cluster multiphoton ionization and fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Three dimensional wave packet motions in the trimer Na_3 ground state X and excited state B have been observed. We report the first study of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na_n^*) with femtosecond laser pulses. The observation of four absorption resonances for the cluster Na_8 with different energy widths and different decay patterns is more difficult to interpret by surface plasmon like resonances than by molecular structure and dynamics. Timeresolved fragmentation of cluster ions Na_n^+ indicates that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional task of a central bank is to preserve price stability and, in doing so, not to impair the real economy more than necessary. To meet this challenge, it is of great relevance whether inflation is only driven by inflation expectations and the current output gap or whether it is, in addition, influenced by past inflation. In the former case, as described by the New Keynesian Phillips curve, the central bank can immediately and simultaneously achieve price stability and equilibrium output, the so-called ‘divine coincidence’ (Blanchard and Galí 2007). In the latter case, the achievement of price stability is costly in terms of output and will be pursued over several periods. Similarly, it is important to distinguish this latter case, which describes ‘intrinsic’ inflation persistence, from that of ‘extrinsic’ inflation persistence, where the sluggishness of inflation is not a ‘structural’ feature of the economy but merely ‘inherited’ from the sluggishness of the other driving forces, inflation expectations and output. ‘Extrinsic’ inflation persistence is usually considered to be the less challenging case, as policy-makers are supposed to fight against the persistence in the driving forces, especially to reduce the stickiness of inflation expectations by a credible monetary policy, in order to reestablish the ‘divine coincidence’. The scope of this dissertation is to contribute to the vast literature and ongoing discussion on inflation persistence: Chapter 1 describes the policy consequences of inflation persistence and summarizes the empirical and theoretical literature. Chapter 2 compares two models of staggered price setting, one with a fixed two-period duration and the other with a stochastic duration of prices. I show that in an economy with a timeless optimizing central bank the model with the two-period alternating price-setting (for most parameter values) leads to more persistent inflation than the model with stochastic price duration. This result amends earlier work by Kiley (2002) who found that the model with stochastic price duration generates more persistent inflation in response to an exogenous monetary shock. Chapter 3 extends the two-period alternating price-setting model to the case of 3- and 4-period price durations. This results in a more complex Phillips curve with a negative impact of past inflation on current inflation. As simulations show, this multi-period Phillips curve generates a too low degree of autocorrelation and too early turnings points of inflation and is outperformed by a simple Hybrid Phillips curve. Chapter 4 starts from the critique of Driscoll and Holden (2003) on the relative real-wage model of Fuhrer and Moore (1995). While taking the critique seriously that Fuhrer and Moore’s model will collapse to a much simpler one without intrinsic inflation persistence if one takes their arguments literally, I extend the model by a term for inequality aversion. This model extension is not only in line with experimental evidence but results in a Hybrid Phillips curve with inflation persistence that is observably equivalent to that presented by Fuhrer and Moore (1995). In chapter 5, I present a model that especially allows to study the relationship between fairness attitudes and time preference (impatience). In the model, two individuals take decisions in two subsequent periods. In period 1, both individuals are endowed with resources and are able to donate a share of their resources to the other individual. In period 2, the two individuals might join in a common production after having bargained on the split of its output. The size of the production output depends on the relative share of resources at the end of period 1 as the human capital of the individuals, which is built by means of their resources, cannot fully be substituted one against each other. Therefore, it might be rational for a well-endowed individual in period 1 to act in a seemingly ‘fair’ manner and to donate own resources to its poorer counterpart. This decision also depends on the individuals’ impatience which is induced by the small but positive probability that production is not possible in period 2. As a general result, the individuals in the model economy are more likely to behave in a ‘fair’ manner, i.e., to donate resources to the other individual, the lower their own impatience and the higher the productivity of the other individual. As the (seemingly) ‘fair’ behavior is modelled as an endogenous outcome and as it is related to the aspect of time preference, the presented framework might help to further integrate behavioral economics and macroeconomics.