8 resultados para GAN NANOWIRES

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of the epitaxial structure and the acceptor doping profile on the efficiency droop in InGaN/GaN LEDs by the physics based simulation of experimental internal quantum efficiency (IQE) characteristics. The device geometry is an integral part of our simulation approach. We demonstrate that even for single quantum well LEDs the droop depends critically on the acceptor doping profile. The Auger recombination was found to increase stronger than with the third power of the carrier density and has been found to dominate the droop in the roll over zone of the IQE. The fitted Auger coefficients are in the range of the values predicted by atomistic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wenn sich in einem wichtigen Bereich der Elektrotechnik ein neues Halbleitermaterial zu etablieren beginnt, weckt dies einerseits Erwartungen der Wirtschaft und Industrie, andererseits kann es eine erhebliche Herausforderung für die Hersteller bedeuten. Nachdem Gallium-Nitrid erstmalig vor 20 Jahren als Transistor verwendet wurde und seit über einer Dekade serienmäßig in der Hochfrequenztechnik eingesetzt wird, erobert es nun die Leistungselektronik. Die ausschlaggebenden Kriterien sind hier die Verwendbarkeit bei höheren Betriebstemperaturen, die Energieeffizienz und die Reduzierung von Größe und Gewicht durch den Betrieb bei höheren Schaltfrequenzen. Die vorliegende Arbeit basiert auf der Motivation zunächst einen möglichst breit angelegten Überblick des ständig wachsenden Angebotsspektrums zu geben, das mittlerweile durch die vielfältigen Varianten der verfügbaren Transistoren an Übersichtlichkeit etwas verloren hat. Nach einer ausführlichen Erläuterung der physikalischen und elektrischen Eigenschaften, werden die jeweiligen Typen in überschaubaren Abschnitten beschrieben und im Anschluss tabellarisch zusammengefasst. Die elektrischen Eigenschaften der hier ausgewählten EPC 2010 eGaN-HFETs (200 V Spannungsklasse) werden eingehend diskutiert. Das Schaltverhalten der eGaN-HFETs in einem Synchron-Tiefsetzsteller wird untersucht und modelliert. Eine Analyse aller in den GaN-FETs entstehenden Verlustleistungen wird durchgeführt. Zur Abschätzung der dynamischen Verlustleistungen wird eine analytische Methode umgesetzt und weiter entwickelt. Um die Vorteile der erhöhten Schaltfrequenzen nutzen zu können, erfolgt eine sehr ausführliche Betrachtung der notwendigen magnetischen Komponenten, deren Auswahl- und Verwendungskriterien im Detail untersucht, evaluiert und aufgegliedert werden. Diese werden im praktischen Teil ausgiebig in Verbindung mit den GaN-Transistoren ausgesucht und messtechnisch bewertet. Theoretische Betrachtungen hinsichtlich der Grenzen, die magnetische Bauelemente schnell schaltenden Halbleitern auferlegen, werden durchgeführt. Da die untersuchten Niedervolt-GaN-HFETs quasi kein Gehäuse haben, ist eine korrekte Strommessung nicht realisierbar. Am praktischen Beispiel eines Synchron-Tiefsetzstellers werden zwei experimentelle Methoden entwickelt, mit deren Hilfe die Verlustleistungen in den EPC 2010 eGaN-HFETs ermittelt werden. Anschließend wird das Verbesserungspotential der GaN-Leistungstransistoren erläutert sowie deren Anwendungsbereiche diskutiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speckle Pattern Shearing Interferometrie (Shearografie) ist eine speckle-interferometrische Messmethode und zeichnet sich durch die ganzflächige, berührungslose Arbeitsweise, hohe räumliche Auflösung und hohe Messempfindlichkeit aus. Diese Dissertation beinhaltet die neue bzw. weitere Entwicklung der Shearografie zur qualitativen Schwingungsbeobachtung und zur quantitativen Schwingungsmessung. Für die qualitative Schwingungsbeobachtung in Echtzeit werden die Optimierung des Zeitmittelungsverfahrens und die neue entwickelte Online-Charakterisierung von Streifenmustern mit statistischen Verfahren vorgestellt. Auf dieser Basis können sowohl eine genaue Fehlstellen-Detektion bei der zerstörungsfreien Materialprüfung als auch eine präzise Resonanzuntersuchung zeitsparend und vollautomatisch durchgeführt werden. Für die quantitative Schwingungsmessung wird eine sog. dynamische Phasenschiebe-Technik neu entwickelt, welche durch die Einführung eines synchron zum Objekt schwingenden Referenzspiegels realisiert wird. Mit dieser Technik ermöglicht das Zeitmittelungsverfahren die Amplituden und Phasen einer Objektschwingung quantitativ zu ermitteln. Auch eine Weiterentwicklung des stroboskopischen Verfahrens in Kombination mit zeitlicher Phasenverschiebung wird in der Arbeit präsentiert, womit der gesamte Prozess der Schwingungsmessung und -rekonstruktion beschleunigt und automatisch durchgeführt wird. Zur Bestimmung des Verschiebungsfeldes aus den gemessenen Amplituden und Phasen des Verformungsgradienten stellt diese Arbeit auch eine Weiterentwicklung des Summationsverfahrens vor. Das Verfahren zeichnet sich dadurch aus, dass die Genauigkeit des ermittelten Verschiebungsfelds unabhängig von der Sheargröße ist und gleichzeitig das praktische Problem - Unstetigkeit - gelöst wird. Eine quantitative Messung erfordert eine genaue Kalibrierung der gesamten Messkette. Ein auf dem Least-Square-Verfahren basierendes Kalibrierverfahren wird in der Arbeit zur Kalibrierung der statischen und dynamischen Phasenverschiebung vorgestellt. Auch die Ermittelung der Sheargröße mit Hilfe der 1D- bzw. 2D-Kreuz-Korrelation wird präsentiert. Zum Schluss wurde die gesamte Entwicklung durch eine Vergleichsmessung mit einem handelsüblichen Scanning-Laser-Doppler-Vibrometer experimentell verifiziert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diese Arbeit beschäftigt sich mit der Herstellung und Anwendungen von periodischen Goldnanopartikel-Arrays (PPAs), die mit Hilfe von Nanosphären-Lithografie hergestellt wurden. In Abhängigkeit der verwendeten Nanosphären-Größe wurden dabei entweder kleine dreieckige Nanopartikel (NP) (bei Verwendung von Nanosphären mit einem Durchmesser von 330 nm) oder große dreieckige NPD sowie leicht gestreckte NP (bei Verwendung von Nanosphären mit einem Durchmesser von 1390 nm) hergestellt. Die Charakterisierung der PPAs erfolgte mit Hilfe von Rasterkraftmikroskopie, Rasterelektronenmikroskopie und optischer Spektroskopie. Die kleinen NP besitzen ein Achsverhältnis (AV) von 2,47 (Kantenlänge des NPs: (74+/-6) nm, Höhe: (30+/-4) nm. Die großen dreieckigen NP haben ein AV von 3 (Kantenlänge des NPs:(465+/-27) nm, Höhe: (1530+/-10) nm) und die leicht gestreckten NP (die aufgrund der Ausbildung von Doppelschichten ebenfalls auf der gleichen Probe erzeugt wurden) haben eine Länge von (364+/-16)nm, eine Breite von (150+/-20) nm und eine Höhe von (150+/-10)nm. Die optischen Eigenschaften dieser NP werden durch lokalisierte Oberflächenplasmon-Polariton Resonanzen (LPPRs) dominiert, d.h. von einem eingestrahlten elektromagnetischen Feld angeregte kollektive Schwingungen der Leitungsbandelektronen. In dieser Arbeit wurden drei signifikante Herausforderungen für Plasmonik-Anwendungen bearbeitet, welche die einzigartigen optischen Eigenschaften dieser NP ausnutzen. Erstens wurden Ergebnisse der selektiven und präzisen Größenmanipulation und damit einer Kontrolle der interpartikulären Abstände von den dreieckigen Goldnanopartikel mit Hilfe von ns-gepulstem Laserlicht präsentiert. Die verwendete Methode basiert hierbei auf der Größen- und Formabhängigkeit der LPPRs der NP. Zweitens wurde die sensorischen Fähigkeiten von Gold-NP ausgenutzt, um die Bildung von molekularen Drähten auf den PPAs durch schrittweise Zugabe von unterschiedlichen molekularen Spezies zu untersuchen. Hierbei wurde die Verschiebung der LSPPR in den optischen Spektren dazu ausgenutzt, die Bildung der Nanodrähte zu überwachen. Drittens wurden Experimente vorgestellt, die sich die lokale Feldverstärkung von NP zu nutze machen, um eine hochgeordnete Nanostrukturierung von Oberflächen mittels fs-gepulstem Laserlicht zu bewerkstelligen. Dabei zeigt sich, dass neben der verwendeten Fluenz die Polarisationsrichtung des eingestrahlten Laserlichts in Bezug zu der NP-Orientierung sowie die Größe der NP äußerst wichtige Parameter für die Nanostrukturierung darstellen. So konnten z.B. Nanolöcher erzeugt werden, die bei höheren Fluenzen zu Nanogräben und Nanokanälen zusammen wuchsen. Zusammengefasst lässt sich sagen, dass die in dieser Arbeit gewonnen Ergebnisse von enormer Wichtigkeit für weitere Anwendungen sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diese Arbeit thematisiert die optimierte Darstellung von organischen Mikro- und Nanodrähten, Untersuchungen bezüglich deren molekularen Aufbaus und die anwendungsorientierte Charakterisierung der Eigenschaften. Mikro- und Nanodrähte haben in den letzten Jahren im Zuge der Miniaturisierung von Technologien an weitreichendem Interesse gewonnen. Solche eindimensionalen Strukturen, deren Durchmesser im Bereich weniger zehn Nanometer bis zu einigen wenigen Mikrometern liegt, sind Gegenstand intensiver Forschung. Neben anorganischen Ausgangssubstanzen zur Erzeugung von Mikro- und Nanodrähten haben organische Funktionsmaterialien aufgrund ihrer einfachen und kostengünstigen Verarbeitbarkeit sowie ihrer interessanten elektrischen und optischen Eigenschaften an Bedeutung gewonnen. Eine wichtige Materialklasse ist in diesem Zusammenhang die Verbindungsklasse der n-halbleitenden Perylentetracarbonsäurediimide (kurz Perylendiimide). Dem erfolgreichen Einsatz von eindimensionalen Strukturen als miniaturisierte Bausteine geht die optimierte und kontrollierte Herstellung voraus. Im Rahmen der Doktorarbeit wurde die neue Methode der Drahterzeugung „Trocknen unter Lösungsmittelatmosphäre“ entwickelt, welche auf Selbstassemblierung der Substanzmoleküle aus Lösung basiert und unter dem Einfluss von Lösungsmitteldampf direkt auf einem vorgegebenen Substrat stattfindet. Im Gegensatz zu literaturbekannten Methoden ist kein Transfer der Drähte aus einem Reaktionsgefäß nötig und damit verbundene Beschädigungen der Strukturen werden vermieden. Während herkömmliche Methoden in einer unkontrolliert großen Menge von ineinander verwundenen Drähten resultieren, erlaubt die substratbasierte Technik die Bildung voneinander separierter Einzelfasern und somit beispielsweise den Einsatz in Einzelstrukturbauteilen. Die erhaltenen Fasern sind morphologisch sehr gleichmäßig und weisen bei Längen von bis zu 5 mm bemerkenswert hohe Aspektverhältnisse von über 10000 auf. Darüber hinaus kann durch das direkte Drahtwachstum auf dem Substrat über den Einsatz von vorstrukturierten Oberflächen und Wachstumsmasken gerichtetes, lokal beschränktes Drahtwachstum erzielt werden und damit aktive Kontrolle auf Richtung und Wachstumsbereich der makroskopisch nicht handhabbaren Objekte ausgeübt werden. Um das Drahtwachstum auch hinsichtlich der Materialauswahl, d. h. der eingesetzten Ausgangsmaterialien zur Drahterzeugung und somit der resultierenden Eigenschaften der gebildeten Strukturen aktiv kontrollieren zu können, wird der Einfluss unterschiedlicher Parameter auf die Morphologie der Selbstassemblierungsprodukte am Beispiel unterschiedlicher Derivate betrachtet. So stellt sich zum einen die Art der eingesetzten Lösungsmittel in flüssiger und gasförmiger Phase beim Trocknen unter Lösungsmittelatmosphäre als wichtiger Faktor heraus. Beide Lösungsmittel dienen als Interaktionspartner für die Moleküle des funktionellen Drahtmaterials im Selbstassemblierungsprozess. Spezifische Wechselwirkungen zwischen Perylendiimid-Molekülen untereinander und mit Lösungsmittel-Molekülen bestimmen dabei die äußere Form der erhaltenen Strukturen. Ein weiterer wichtiger Faktor ist die Molekülstruktur des verwendeten funktionellen Perylendiimids. Es wird der Einfluss einer Bay-Substitution bzw. einer unsymmetrischen Imid-Substitution auf die Morphologie der erhaltenen Strukturen herausgestellt. Für das detaillierte Verständnis des Zusammenhanges zwischen Molekülstruktur und nötigen Wachstumsbedingungen für die Bildung von eindimensionalen Strukturen zum einen, aber auch die resultierenden Eigenschaften der erhaltenen Aggregationsprodukte zum anderen, sind Informationen über den molekularen Aufbau von großer Bedeutung. Im Rahmen der Doktorarbeit konnte ein molekular hoch geordneter, kristalliner Aufbau der Drähte nachgewiesen werden. Durch Kombination unterschiedlicher Messmethoden ist es gelungen, die molekulare Anordnung in Strukturen aus einem Spirobifluoren-substituierten Derivat in Form einer verkippten Molekülstapelung entlang der Drahtlängsrichtung zu bestimmen. Um mögliche Anwendungsbereiche der erzeugten Drähte aufzuzeigen, wurden diese hinsichtlich ihrer elektrischen und optischen Eigenschaften analysiert. Neben dem potentiellen Einsatz im Bereich von Filteranwendungen und Sensoren, sind vor allem die halbleitenden und optisch wellenleitenden Eigenschaften hervorzuheben. Es konnten organische Transistoren auf der Basis von Einzeldrähten mit im Vergleich zu Dünnschichtbauteilen erhöhten Ladungsträgerbeweglichkeiten präpariert werden. Darüber hinaus wurden die erzeugten eindimensionalen Strukturen als aktive optische Wellenleiter charakterisiert. Die im Rahmen der Dissertation erarbeiteten Kenntnisse bezüglich der Bildung von eindimensionalen Strukturen durch Selbstassemblierung, des Drahtaufbaus und erster anwendungsorientierter Charakterisierung stellen eine Basis zur Weiterentwicklung solcher miniaturisierter Bausteine für unterschiedlichste Anwendungen dar. Die neu entwickelte Methode des Trocknens unter Lösungsmittelatmosphäre ist nicht auf den Einsatz von Perylendiimiden beschränkt, sondern kann auf andere Substanzklassen ausgeweitet werden. Dies eröffnet breite Möglichkeiten der Materialauswahl und somit der Einsatzmöglichkeiten der erhaltenen Strukturen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen dieser interdisziplinären Doktorarbeit wird eine (Al)GaN Halbleiteroberflächenmodifikation untersucht, mit dem Ziel eine verbesserte Grenzfläche zwischen dem Material und dem Dielektrikum zu erzeugen. Aufgrund von Oberflächenzuständen zeigen GaN basierte HEMT Strukturen üblicherweise große Einsatzspannungsverschiebungen. Bisher wurden zur Grenzflächenmodifikation besonders die Entfernung von Verunreinigungen wie Sauerstoff oder Kohlenstoff analysiert. Die nasschemischen Oberflächenbehandlungen werden vor der Abscheidung des Dielektrikums durchgeführt, wobei die Kontaminationen jedoch nicht vollständig entfernt werden können. In dieser Arbeit werden Modifikationen der Oberfläche in wässrigen Lösungen, in Gasen sowie in Plasma analysiert. Detaillierte Untersuchungen zeigen, dass die inerte (0001) c-Ebene der Oberfläche kaum reagiert, sondern hauptsächlich die weniger polaren r- und m- Ebenen. Dies kann deutlich beim Defektätzen sowie bei der thermischen Oxidation beobachtet werden. Einen weiteren Ansatz zur Oberflächenmodifikation stellen Plasmabehandlungen dar. Hierbei wird die Oberflächenterminierung durch eine nukleophile Substitution mit Lewis Basen, wie Fluorid, Chlorid oder Oxid verändert, wodurch sich die Elektronegativitätsdifferenz zwischen dem Metall und dem Anion im Vergleich zur Metall-Stickstoff Bindung erhöht. Dies führt gleichzeitig zu einer Erhöhung der Potentialdifferenz des Schottky Kontakts. Sauerstoff oder Fluor besitzen die nötige thermische Stabilität um während einer Silicium-nitridabscheidung an der (Al)GaN Oberfläche zu bleiben. Sauerstoffvariationen an der Oberfläche werden in NH3 bei 700°C, welches die nötigen Bedingungen für die Abscheidung darstellen, immer zu etwa 6-8% reduziert – solche Grenzflächen zeigen deswegen auch keine veränderten Ergebnisse in Einsatzspannungsuntersuchungen. Im Gegensatz dazu zeigt die fluorierte Oberfläche ein völlig neues elektrisches Verhalten: ein neuer dominanter Oberflächendonator mit einem schnellen Trapping und Detrapping Verhalten wird gefunden. Das Energieniveau dieses neuen, stabilen Donators liegt um ca. 0,5 eV tiefer in der Bandlücke als die ursprünglichen Energieniveaus der Oberflächenzustände. Physikalisch-chemische Oberflächen- und Grenzflächenuntersuchung mit XPS, AES oder SIMS erlauben keine eindeutige Schlussfolgerung, ob das Fluor nach der Si3N4 Abscheidung tatsächlich noch an der Grenzfläche vorhanden ist, oder einfach eine stabilere Oberflächenrekonstruktion induziert wurde, bei welcher es selbst nicht beteiligt ist. In beiden Fällen ist der neue Donator in einer Konzentration von 4x1013 at/cm-2 vorhanden. Diese Dichte entspricht einer Oberflächenkonzentration von etwa 1%, was genau an der Nachweisgrenze der spektroskopischen Methoden liegt. Jedoch werden die elektrischen Oberflächeneigenschaften durch die Oberflächenmodifikation deutlich verändert und ermöglichen eine potentiell weiter optimierbare Grenzfläche.