4 resultados para G-protein-coupled receptor
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Neben der Verbreitung von gefährlichen Krankheiten sind Insekten für enorme agrarwirtschaftliche Schäden verantwortlich. Ein Großteil der Verhaltensweisen bei Insekten wird über den Geruchssinn gesteuert, der somit einen möglichen Angriffspunkt zur Bekämpfung von Schadinsekten darstellt. Hierzu ist es allerdings nötig, die Mechanismen der olfaktorischen Signalübertragung im Detail zu verstehen. Neben den duftstoffbindenden olfaktorischen Rezeptoren spielt hier auch ein konservierter Korezeptor (Orco) eine entscheidende Rolle. Inwieweit bei diesen Proteinen ionotrope bzw. metabotrope Prozesse involviert sind ist bislang nicht vollständig aufgeklärt. Um weitere Einzelheiten aufzuklären wurden daher Einzelsensillenableitungen am Tabakschwärmer Manduca sexta durchgeführt. Orco-Agonisten und Antagonisten wurden eingesetzt, um die Funktion des Korezeptors besser zu verstehen. Bei dem Einsatz des Orco-Agonisten VUAA1 konnte keine Verstärkung der Pheromonantworten bzw. eine Sensitivierung beobachtet werden, wie im Falle einer ionotropen Signalweiterleitung zu erwarten gewesen wäre. Ein ionotroper Signalweg über den OR/Orco-Komplex in M. sexta ist daher unwahrscheinlich. Der Orco-Antagonist OLC15 beeinflusste die gleichen Parameter wie VUAA1 und konnte die von VUAA1 generierte Spontanaktivität blocken. Daher ist es wahrscheinlich, dass dieser einen spezifischen Orco-Blocker darstellt. Sowohl VUAA1 als auch OLC15 hatten großen Effekt auf die langanhaltende Pheromonantwort, welches die Vermutung nahelegt, dass Orco modulierend auf die Sensitivität der Nervenzelle einwirkt. Von OLC15 abweichende Effekte durch die getesteten Amiloride HMA und MIA auf die Pheromonantwort lassen nicht auf eine spezifische Wirkung dieser Agenzien auf Orco schließen und zusätzliche Wirkorte sind anzunehmen. Um die These eines metabotropen Signalwegs zu überprüfen wurde ebenfalls der G-Protein-Blocker GDP-β-S eingesetzt. Alle Parameter der Pheromonantwort die innerhalb der ersten Millisekunden analysiert wurden wiesen eine Reduktion der Sensitivität auf. Im Gegensatz dazu hatte GDP-β-S keinen Effekt auf die langanhaltende Pheromonantwort. Somit scheint ausschließlich die schnelle Pheromonantwort über einen Ligand-bindenden G-Protein-gesteuerten Rezeptor gesteuert zu werden.
Resumo:
Fliegende Insekten orientieren sich in ihrer Umwelt mit Hilfe ihres hoch entwickelten olfaktorischen Systems. Es ermöglicht ihnen das Auffinden geeigneter Futter- und Eiablageplätze und ist unverzichtbar bei der innerartlichen Kommunikation. Der Geruchssinn muss dabei gleichzeitig sehr schnell und sensitiv sein um selbst geringste Mengen, z.B. des arteigenen Sexualpheromons, wahrnehmen zu können. Spezifische olfaktorische Rezeptoren (ORs) zur Detektion dieser Duftstoffe werden zusammen mit einem hoch konservierten Co-Rezeptor (Orco) in olfaktorischen Rezeptorneuronen (ORNs) auf den Insektenantennen exprimiert. Sie gehören zu den 7 Transmembran Rezeptoren, zeigen jedoch eine invertierte Membrantopologie im Vergleich zu den ORs der Vertebraten. Darüber hinaus bildet der OR/Orco-Komplex einen spontanaktiven Kationenkanal, die Bindung an ein G Protein ist allerdings umstritten. Daher ist noch ungeklärt, ob die Duftstoffbindung zu einer ionotropen Aktivierung des OR/Orco Kanals führt oder ob metabotrope Mechanismen die Bildung von zyklischem Adenosinmonophosphat (cAMP) oder Inositol 1,4,5-trisphosphat (IP3) bewirken. Mit Hilfe von extrazellulären Ableitungen einzelner Trichoidsensillen (tip recordings) auf den Antennen männlicher Manduca sexta wurde die Rolle von Orco sowie die Beteiligung einer Phospholipase Cβ (PLCβ)-abhängigen Transduktionskaskade untersucht. Es konnte gezeigt werden, dass die durch VUAA1 induzierte Spontanaktivität der ORNs durch OLC15 inhibiert und Orco somit kompetitiv gehemmt wurde. Eine Inhibition von Orco sollte die Antwort auf kurze Pheromonpulse sofort reduzieren, sollte die Transduktion über die Aktivierung des OR/Orco Kanals erfolgen. Die Ergebnisse dieser Arbeit zeigten jedoch keine Beeinflussung der primären Pheromonantwort, vielmehr wurde die späte, langanhaltende Antwort reduziert. Die ebenfalls als Orco-Antagonisten charakterisierten Amiloride MIA und HMA beeinflussen offensichtlich weitere Ziele, da eine substanz- und zeitgeberzeitabhängige Reduzierung der primären Antwort auftrat. Zusätzlich wurde die primäre Pheromonantwort durch die Inhibierung der PLCβ und der Proteinkinase C (PKC), sowie durch die Verwendung zweier Diacylglycerol (DAG)- Derivate signifikant beeinflusst. Hierbei zeigte die Inhibierung von PLCβ und PKC zeitgeberzeitabhängige Unterschiede in der Stärke der Antwortreduktion. Auch die Applikation des DAG-Derivates DOG reduzierte die Pheromonantwort, während die Zugabe von OAG die ORN Aktivität steigern oder reduzieren konnte, abhängig von der verwendeten Derivatkonzentration und der Pheromonkonzentration. Die Ergebnisse dieser Arbeit deuten somit auf einen metabotropen, sehr wahrscheinlich PLCβ-abhängigen Mechanismus für die Pheromontransduktion bei Manduca sexta.
Resumo:
During synaptic transmission, NT-filled synaptic vesicles are released by Ca2+-triggered exocytosis at the active zone. Following exocytosis, SV membrane is immediately re-internalized and synaptic vesicles (SVs) are regenerated by a local recycling mechanism within the presynaptic terminal. It is debated whether an endosomal compartment is involved in this recycling process. In contrast, it is well known from cultured mammalian cells, that endocytic vesicles fuse to the early sorting endosome. The early endosome is a major sorting station of the cell where cargo is send into the degradative pathway to late endosome and lysosome or towards recycling. Each trafficking step is mediated by a certain protein of the Rab family. Rab proteins are small GTPases belonging to the Ras superfamily. They accumulate at their target compartments and have thereby been used as markers for the different endocytic organelles in cultured mammalian cells. Rab5 controls trafficking from the PM to the early endosome and has thereby been used as marker for this compartment. A second marker is based on the specific binding of the FYVE zinc finger protein domain to the lipid PI(3)P that is specifically generated at the early endosomal membrane. This study used the Drosophila NMJ as a model system to investigate the SV recycling process. In particular, three questions were addressed: First, is an endosomal compartment present at the synapse? Second, do SVs recycle through an endosome? Third, is Rab5 involved in SV recycling? We used GFP fusions of Rab5 and 2xFYVE to visualize endosomal compartments at the presynaptic terminal of Drosophila third instar larval NMJs. Furthermore, the endosomes are located within the pool of recycling SVs, labeled with the styryl-dye FM5-95. Using the temperature-sensitive mutation in Dynamin, shibirets, we showed that SV recycling involves trafficking through an intermediate endosomal compartment. In cultured mammalian cells, interfering with Rab5 function by expressing the dominant negative version, Rab5SN causes the fragmentation of the endosome and the accumulation of endocytic vesicles. In contrast, when Rab5 is overexpressed enlarged endosomal compartments were observed. In Drosophila, the endosomal compartment was disrupted when loss of function and dominant negative mutants of Rab5 were expressed. In addition, at the ultrastructural we observed an accumulation of endocytic vesicles in Rab5S43N expressing terminals and enlarged endosomes when Rab5 was overexpressed. Furthermore, interfering with Rab5 function using the dominant negative Rab5S43N caused a decrease in the SV recycling kinetics as shown by FM1-43 experiments. In contrast, overexpression of Rab5 or GFP-Rab5 caused an increase in the FM1-43 internalization rate. Finally, standard electrophysiological techniques were used to measure synaptic function. We found that the Rab5-mediated endosomal SV recycling pathway generates vesicles with a higher fusion efficacy during Ca2+-triggered release, compared to SVs recycled when Rab5 function was impaired. We therefore suggest a model in which the endosome serves as organelle to control the SV fusion efficacy and thereby the synaptic strength. Since changes in the synaptic strength are occuring during learning and memory processes, controlling endosomal SV recycling might be a new molecular mechanism involved in learning and memory.