4 resultados para Free trade and protection
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The United States of America and the European Union are currently negotiating a Transatlantic Trade and Investment Partnership (TTIP). It is one of the most ambitious free trade and investment initiatives, going much further than eliminating tariffs. TTIP mainly aims at reducing “non-tariff barriers”. While tariffs on goods have been imposed with an eye to foreign competition, most of the non-tariff barriers are the laws and regulations that are the result of social struggles for the protection of consumers and workers. It is therefore certain that TTIP will impact workers. This volume provides a preliminary assessment of the likely consequences for labor by: - providing an overall introduction to the TTIP negotiations; -assessing the reliability of the studies claiming employment gains; - highlighting specific problematic proposals such as the investor-to-state dispute settlement mechanism; - presenting the position of organized labor from both sides of the Atlantic. / Among the contributors are Stefan Beck (Kassel), Lance Compa (Ithaca, New York), Pia Eberhardt (Brussels) and Werner Raza (Vienna).
Resumo:
Even though there have been many studies on the impact of trade liberalisation on labour standards, most of the studies are at national level, and there is a lack of research at industry level. This paper examines the impact of free trade on labour standards in capital- and labour-intensive industries in a developing country. For empirical findings, I take the case of the garment industry, representing labour-intensive industry, and automotive industry, representing capital-intensive industry, in Indonesia in the face of ASEAN Free Trade Area (AFTA). Since the garment industry is a women-dominated industry, while the automotive industry is a men-dominated industry, this paper also employs a feminist perspective. As such, this paper also investigates whether free trade equally affects men and women workers. Besides free trade, other independent variables are also taken into account. Employing quantitative and qualitative methods, empirical evidence shows that there is an indication that free trade has a negative relationship with labour standards in the garment industry, whereas a positive relationships with labour standards in the automotive industry. This implies that free trade might result in decreasing labour standards in labour-intensive industry, while increasing standards in capital-intensive industry. It can also be inferred that free trade unequally affect men and women workers, in that women workers bear the brunt of free trade. The results also show that other internal and external independent variables are indicated to have relationships with labour standards in the garment and automotive industries. Therefore, these variables need to be considered in examining the extent of the impact of free trade on labour standards in labour- and capital-intensive industries.
Resumo:
In now-a-days semiconductor and MEMS technologies the photolithography is the working horse for fabrication of functional devices. The conventional way (so called Top-Down approach) of microstructuring starts with photolithography, followed by patterning the structures using etching, especially dry etching. The requirements for smaller and hence faster devices lead to decrease of the feature size to the range of several nanometers. However, the production of devices in this scale range needs photolithography equipment, which must overcome the diffraction limit. Therefore, new photolithography techniques have been recently developed, but they are rather expensive and restricted to plane surfaces. Recently a new route has been presented - so-called Bottom-Up approach - where from a single atom or a molecule it is possible to obtain functional devices. This creates new field - Nanotechnology - where one speaks about structures with dimensions 1 - 100 nm, and which has the possibility to replace the conventional photolithography concerning its integral part - the self-assembly. However, this technique requires additional and special equipment and therefore is not yet widely applicable. This work presents a general scheme for the fabrication of silicon and silicon dioxide structures with lateral dimensions of less than 100 nm that avoids high-resolution photolithography processes. For the self-aligned formation of extremely small openings in silicon dioxide layers at in depth sharpened surface structures, the angle dependent etching rate distribution of silicon dioxide against plasma etching with a fluorocarbon gas (CHF3) was exploited. Subsequent anisotropic plasma etching of the silicon substrate material through the perforated silicon dioxide masking layer results in high aspect ratio trenches of approximately the same lateral dimensions. The latter can be reduced and precisely adjusted between 0 and 200 nm by thermal oxidation of the silicon structures owing to the volume expansion of silicon during the oxidation. On the basis of this a technology for the fabrication of SNOM calibration standards is presented. Additionally so-formed trenches were used as a template for CVD deposition of diamond resulting in high aspect ratio diamond knife. A lithography-free method for production of periodic and nonperiodic surface structures using the angular dependence of the etching rate is also presented. It combines the self-assembly of masking particles with the conventional plasma etching techniques known from microelectromechanical system technology. The method is generally applicable to bulk as well as layered materials. In this work, layers of glass spheres of different diameters were assembled on the sample surface forming a mask against plasma etching. Silicon surface structures with periodicity of 500 nm and feature dimensions of 20 nm were produced in this way. Thermal oxidation of the so structured silicon substrate offers the capability to vary the fill factor of the periodic structure owing to the volume expansion during oxidation but also to define silicon dioxide surface structures by selective plasma etching. Similar structures can be simply obtained by structuring silicon dioxide layers on silicon. The method offers a simple route for bridging the Nano- and Microtechnology and moreover, an uncomplicated way for photonic crystal fabrication.