2 resultados para Forest yield
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
A field experiment was conducted under rainfed conditions in western Sudan at El-Obeid Research Farm and Eldemokeya Forest Reserve, North Kordofan State, during the growing seasons 2004/05 and 2005/06. The main objective was to investigate the soil physical and chemical properties and yield of groundnut (Arachis hypogea), sesame (Sesamum indicum) and roselle (Hibiscus sabdariffa) of an Acacia senegal agroforestry system in comparison with the sole cropping system. Data were recorded for soil physical and chemical properties, soil moisture content, number of pods per plant, fresh weight (kg ha^−1) and crop yield (kg ha^−1). The treatments were arranged in Randomized Complete Block Design (RCBD) and replicated four times. Significant differences (P < 0.05) were obtained for sand and silt content on both sites, while clay content was not significantly different on both sites. The nitrogen (N) and organic carbon were significantly (P < 0.05) higher in the intercropping system in Eldemokeya Forest Reserve compared with sole cropping. Soil organic carbon, N and pH were not significant on El-Obeid site. Yet the level of organic carbon, N, P and pH was higher in the intercropping system. Fresh weight was significantly different on both sites. The highest fresh weight was found in the intercropping system. Dry weights were significantly different for sesame and roselle on both sites, while groundnut was not significantly different. On both sites intercropping systems reduced groundnut, sesame and roselle yields by 26.3, 12 and 20.2%, respectively. The reduction in yield in intercropping plots could be attributed to high tree density, which resulted in water and light competition between trees and the associated crops.
Resumo:
In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.