4 resultados para Forckenbeck, Max von, 1821-1892.
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Als Kräuter werden alle krautigen Pflanzen, die nicht zu den Gehölzen und zu den Gräsern zählen, bezeichnet. Sie erfüllen wichtige Funktionen bei der Förderung von Insekten und der Ästhetik von Landschaften und tragen zur Verbesserung des Grundfutters landwirtschaftlicher Nutztiere bei. Ansaaten von Kräutern in geschlossene Vegetationsdecken und bei Neuanlagen sind durch deren langandauernde Entwicklungsphasen sehr schwierig zu realisieren. Eine innovative Option zur Etablierung in Grünlandbeständen kann die Herstellung von Kräutersoden sein. Ziel dieser Arbeit ist die Untersuchung der Eignung von Kräutern zur Sodenproduktion. Durch unterschiedliche Merkmale von Kräutern und Gräsern können Probleme bei der Entwicklung von Kräutersoden auftreten. In dieser Arbeit sind verschiedene Anbauversuche mit Wurzelkürzungen und Ertragsbestimmungen sowie Sodenverpflanzungen, die Ermittlung eines optimalen Trägermaterials und Untersuchungen zur Entwicklung eines Sodenschneidersystems durchgeführt worden. Wurzelkürzungen an Kräutern ergaben, dass die Bildung der Gesamtwurzelmasse, der Wurzelneubildung und der Masse des Oberbewuchses bei einzelnen Kräutern nur z.T. im Zusammenhang mit der Schnitttiefe stehen und die Entwicklungsstadien der Kräuter keine signifikanten Unterschiede aufzeigen. Hieraus ergibt sich, dass ein Wurzelschnitt generell möglich ist, jedoch verschiedenen Arte von Kräutern unterschiedlich stark auf diesen reagieren. Zu den Entwicklungsstadien, zum Ertrag des Bewuchses und zum Anwurzelungsverhalten von Kräutersoden können in Abhängigkeit vom Vorzuchtsort und im Vergleich zu Fertigrasen keine abschließenden Aussagen getroffen werden. Es besteht daher weiterer Forschungsbedarf. Ein kombinierter Anbau mit Untergräsern eignet sich durch die wuchsverdrängende Wirkung nicht zur Stabilisierung von Kräutersoden. Es konnte aber gezeigt werden, dass Trägermaterial aus Kokosfaser durch die hohe Zugfestigkeit und der Langlebigkeit des Materials geeignet ist. Demzufolge könnte es bei der Produktion von Kräutersoden eine wichtige Rolle spielen. Das Design von Sodenschneidertechnik aus dem Fertigrasenanbau kann nicht auf die Erzeugung von Kräutersoden übertragen werden, da Kräuter andere Wurzelmerkmale als Gräser haben und sich daher spezielle Anforderungen ergeben. Für einen erfolgreichen Schälvorgang von Kräutersoden bedarf es der Entwicklung einer speziell angepassten Technik. Denkbar währe die Verwendung oszillierender Schneideorgane, welche den Schneidevorgang besser ermöglichen könnten. Dadurch, dass ein flacher Wurzelschnitt bei Kräutern erfolgen kann, ist eine Erzeugung von Kräutersoden möglich. Aufgrund von morphologischen Unterschieden zwischen Kräutern und Gräsern unterscheiden sich diese in ihren Anforderungsprofilen, die Techniken der Fertigrasenproduktion können somit nicht direkt auf eine Kräutersodenproduktion übertragen werden. Mit dieser Arbeit fand ein erster Ansatz zur technischen Entwicklung einer Kräutersodenproduktion statt. Die Versuche haben gezeigt, dass noch viele Fragen bei der Entwicklung von Kräutersoden offen sind.
Resumo:
Im Rahmen der vorliegenden Arbeit wird ein Verfahren vorgestellt und untersucht, mit welchem Früchte annähernd verlustfrei und unter sehr hygienischen Bedingungen geschnitten werden können. Die Produkte – hier gezeigt am Beispiel von Äpfeln und Melonen – werden mit einem Hochdruckwasserstrahl geschnitten, der durch ein bildverarbeitendes System entsprechend der Anatomie der Frucht geführt werden kann. Die Vorteile dieses Verfahrens sind die individuelle Schnittführung, die Materialverluste minimiert und die Tatsache, dass die Frucht ohne wesentlichen Eingriff von Personal bearbeitet wird. Die Literaturauswertung ergab, dass diese Technologie bislang noch nicht bearbeitet wurde. Der Einsatz des Hochdruckwasserstrahlschneidens im Bereich der Agrartechnik beschränkte sich auf das Schneiden von Zuckerrüben Brüser [2008], Ligocki [2005] bzw. Kartoffeln Becker u. Gray [1992], das Zerteilen von Fleisch Bansal u. Walker [1999] und Fisch Lobash u. a. [1990] sowie die Nutzung von Wasserstrahlen im Zusammenhang mit der Injektion von Flüssigdünger in Ackerböden Niemoeller u. a. [2011]. Ziel dieser Arbeit war es daher, die Einsatzmöglichkeiten des Wasserstrahlschneidens zu erfassen und zu bewerten. Dazu wurden in einer Vielzahl von Einzelversuchen die Zusammenhänge zwischen den Prozessparametern wie Wasserdruck, Düsendurchmesser, Vorschubgeschwindigkeit und Düsenabstand auf das Schnittergebnis, also die Rauheit der entstehenden Schnittfläche untersucht. Ein Vergleich mit konventionellen Schneidemethoden erfolgte hinsichtlich der Schnittergebnisse und der Auswirkungen des Wasserstrahlschneidens auf nachfolgende Verfahrensschritte, wie dem Trocknen.
Einfluss von Erhitzung und Gefriertrocknung auf die Lutein- und Zeaxanthin-Konzentrationen in Eigelb
Resumo:
Veränderungen der Matrixbindung und der molekularen Struktur der antioxidativ wirkenden Carotinoide können die Bioakzessibilität dieser Substanzen beeinflussen. Die vorliegende Studie untersuchte die Einflüsse von Erhitzung und Gefriertrocknung auf die Massenkonzentrationen der all-E- und 13-Z-Isomere von Lutein und Zeaxanthin in Eigelb und dessen Fraktionen Plasma und Granula. Dabei wurden die Strukturveränderungen der Lipoproteine, mit deren Lipiden die Eigelb-Xanthophylle assoziiert sind, betrachtet. Die Strukturentfaltungen der Low-Density und High-Density Lipoproteine (LDL und HDL) erhöhten die Extrahierbarkeit sowie Z-Isomerisierungen und oxidative Degradationen der Xanthophylle, die der Temperatureinfluss und Reaktanten katalysierten. Die Extrahierbarkeit, Z-Isomerisierungen und oxidative Degradationen der Xanthophylle waren durch den Aufschluss, die Gelbildung, die Oberflächenvergrößerung und die Erhöhung des Trockenmassegehalts der Matrix beeinflusst. Die Strukturentfaltung der in hohen Mengen in Plasma enthaltenen LDL findet bei geringeren Temperaturen (ca. 65 - 76 °C) als die der in Granula dominanten HDL (ca. 75 - 84 °C) statt. Zudem schien die gefriertrocknungsinduzierte Strukturentfaltung der LDL im Gegensatz zu HDL und Granula durch Rehydratation nicht vollständig reversibel zu sein. Daher wies Plasma eine geringere Stabilität bei der Erhitzung und Gefriertrocknung als Eigelb und Granula auf. Die Entfaltung von Lipoproteinstrukturen und die thermisch katalysierte Z-Isomerisierung sind wahrscheinlich für die signifikante 13-Z-Lutein-Zunahme nach Erhitzung von Plasma und Granula bei 82 und 87 °C sowie von Granula bei 77 °C verantwortlich. Der signifikante Verlust der all-E-Isomere der bei 87 °C erhitzten Proben von Eigelb und Granula war vermutlich durch 13-Z-Isomerisierungen und oxidative Degradationen der Xanthophylle bedingt. Marginale Veränderungen der Xanthophylle basierten vermutlich darauf, dass die multifaktoriellen Einflüsse bei der Erhitzung einander kompensierten. Die Erhitzung bei 67 °C bedingte zudem aufgrund der weitgehenden Erhaltung der Lipoproteine ähnliche Xanthophyll-Gehalte wie bei den unerhitzten Proben. Bei der Gefriertrocknung führten die Strukturentfaltung der Lipoproteine unter Abspaltung der Lipide und die abtrocknungsbedingte Oberflächenvergrößerung zu signifikanten Zunahmen der Xanthophylle bei Plasma und Granula. Dies bestätigte sich für gefriergetrocknetes Eigelb vermutlich aufgrund von oxidativen Degradationen und Aggregationen der Xanthophylle nicht. Unterschiedliche Massenkonzentrationsänderungen der Xanthophylle im Vergleich der beiden Chargen wurden mit unterschiedlichen Anteilen an ungesättigten Fettsäuren erklärt. Die charakteristischen Anteile an Proteinen und Lipoproteinen, deren Gelbildungseigenschaften und die Lipidkomposition der Lipoproteine sowie die methodisch bedingte Verdünnung von Plasma waren vermutlich für die bei Granula, Plasma und Eigelb differierenden Massenkonzentrationsänderungen der Xanthophylle verantwortlich. Die Ergebnisse ließen eine höhere 13-Z-Isomerisierungsneigung von all-E-Lutein im Vergleich zu all-E-Zeaxanthin vermuten.
Resumo:
Bei der Auslegung von Trocknungsprozessen empfindlicher biologischer Güter spielt die Produktqualität eine zunehmend wichtige Rolle. Obwohl der Einfluss der Trocknungsparameter auf die Trocknungskinetik von Äpfeln bereits Gegenstand vieler Studien war, sind die Auswirkungen auf die Produktqualität bisher kaum bekannt. Die Untersuchung dieses Sachverhalts und die Entwicklung geeigneter Prozessstrategien zur Verbesserung der Qualität des resultierenden Produkts, waren das Ziel der vorliegenden Arbeit. In einem ersten Schritt wurden zunächst umfangreiche stationäre Grundlagenversuche durchgeführt, die zeigten, dass eine Lufttemperatur im höheren Bereich, eine möglichst hohe Luftgeschwindigkeit und eine niedrige Taupunkttemperatur zur geringsten Trocknungszeit bei gleichzeitig guter optischer Qualität führt. Die Beurteilung dieser Qualitätsveränderungen erfolgte mit Hilfe einer neu eingeführten Bezugsgröße, der kumulierten thermischen Belastung, die durch das zeitliche Integral über der Oberflächentemperatur repräsentiert wird und die Vergleichbarkeit der Versuchsergebnisse entscheidend verbessert. Im zweiten Schritt wurden die Ergebnisse der Einzelschichtversuche zur Aufstellung eines numerischen Simulationsmodells verwendet, welches sowohl die entsprechenden Transportvorgänge, als auch die Formveränderung des Trocknungsgutes berücksichtigt. Das Simulationsmodell sowie die experimentellen Daten waren die Grundlage zur anschließenden Entwicklung von Prozessstrategien für die konvektive Trocknung von Äpfeln, die die resultierende Produktqualität, repräsentiert durch die Produktfarbe und –form, verbessern und gleichzeitig möglichst energieeffizient sein sollten. In einem weiteren Schritt wurde die Übertragbarkeit auf den industriellen Maßstab untersucht, wobei die entsprechenden Prozessstrategien an einer neu entwickelten, kostengünstigen Trocknungsanlage erfolgreich implementiert werden konnten. Das Ziel einer verbesserten Produktqualität konnte mit Hilfe unterschiedlicher instationärer Trocknungsschemata sowohl am Einzelschichttrockner, als auch im größeren Maßstab erreicht werden. Das vorgestellte numerische Simulationsmodell zeigte auch bei der Vorhersage des instationären Trocknungsprozesses eine hohe Genauigkeit und war außerdem in der Lage, den Trocknungsverlauf im industriellen Maßstab zuverlässig voraus zu berechnen.