8 resultados para Forage grass quality

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vor dem Hintergund der Integration des wissensbasierten Managementsystems Precision Farming in den Ökologischen Landbau wurde die Umsetzung bestehender sowie neu zu entwickelnder Strategien evaluiert und diskutiert. Mit Blick auf eine im Precision Farming maßgebende kosteneffiziente Ertragserfassung der im Ökologischen Landbau flächenrelevanten Leguminosen-Grasgemenge wurden in zwei weiteren Beiträgen die Schätzgüten von Ultraschall- und Spektralsensorik in singulärer und kombinierter Anwendung analysiert. Das Ziel des Precision Farming, ein angepasstes Management bezogen auf die flächeninterne Variabilität der Standorte umzusetzen, und damit einer Reduzierung von Betriebsmitteln, Energie, Arbeit und Umwelteffekten bei gleichzeitiger Effektivitätssteigerung und einer ökonomischen Optimierung zu erreichen, deckt sich mit wesentlichen Bestrebungen im Ökogischen Landbau. Es sind vorrangig Maßnahmen zur Erfassung der Variabilität von Standortfaktoren wie Geländerelief, Bodenbeprobung und scheinbare elektrische Leitfähigkeit sowie der Ertragserfassung über Mähdrescher, die direkt im Ökologischen Landbau Anwendung finden können. Dagegen sind dynamisch angepasste Applikationen zur Düngung, im Pflanzenschutz und zur Beseitigung von Unkräutern aufgrund komplexer Interaktionen und eines eher passiven Charakters dieser Maßnahmen im Ökologischen Landbau nur bei Veränderung der Applikationsmodelle und unter Einbindung weiterer dynamischer Daten umsetzbar. Beispiele hiefür sind einzubeziehende Mineralisierungsprozesse im Boden und organischem Dünger bei der Düngemengenberechnung, schwer ortsspezifisch zuzuordnende präventive Maßnamen im Pflanzenschutz sowie Einflüsse auf bodenmikrobiologische Prozesse bei Hack- oder Striegelgängen. Die indirekten Regulationsmechanismen des Ökologischen Landbaus begrenzen daher die bisher eher auf eine direkte Wirkung ausgelegten dynamisch angepassten Applikationen des konventionellen Precision Farming. Ergänzend sind innovative neue Strategien denkbar, von denen die qualitätsbezogene Ernte, der Einsatz hochsensibler Sensoren zur Früherkennung von Pflanzenkrankheiten oder die gezielte teilflächen- und naturschutzorientierte Bewirtschaftung exemplarisch in der Arbeit vorgestellt werden. Für die häufig große Flächenanteile umfassenden Leguminosen-Grasgemenge wurden für eine kostengünstige und flexibel einsetzbare Ertragserfassung die Ultraschalldistanzmessung zur Charakterisierung der Bestandeshöhe sowie verschiedene spektrale Vegetationsindices als Schätzindikatoren analysiert. Die Vegetationsindices wurden aus hyperspektralen Daten nach publizierten Gleichungen errechnet sowie als „Normalized Difference Spectral Index“ (NDSI) stufenweise aus allen möglichen Wellenlängenkombinationen ermittelt. Die Analyse erfolgte für Ultraschall und Vegetationsindices in alleiniger und in kombinierter Anwendung, um mögliche kompensatorische Effekte zu nutzen. In alleiniger Anwendung erreichte die Ultraschallbestandeshöhe durchweg bessere Schätzgüten, als alle einzelnen Vegetationsindices. Bei den letztgenannten erreichten insbesondere auf Wasserabsorptionsbanden basierende Vegetationsindices eine höhere Schätzgenauigkeit als traditionelle Rot/Infrarot-Indices. Die Kombination beider Sensorda-ten ließ eine weitere Steigerung der Schätzgüte erkennen, insbesondere bei bestandesspezifischer Kalibration. Hierbei kompensieren die Vegetationsindices Fehlschätzungen der Höhenmessung bei diskontinuierlichen Bestandesdichtenänderungen entlang des Höhengradienten, wie sie beim Ährenschieben oder durch einzelne hochwachsende Arten verursacht werden. Die Kombination der Ultraschallbestandeshöhe mit Vegetationsindices weist das Potential zur Entwicklung kostengünstiger Ertragssensoren für Leguminosen-Grasgemenge auf. Weitere Untersuchungen mit hyperspektralen Vegetationsindices anderer Berechnungstrukturen sowie die Einbindung von mehr als zwei Wellenlängen sind hinsichtlich der Entwicklung höherer Schätzgüten notwendig. Ebenso gilt es, Kalibrierungen und Validationen der Sensorkombination im artenreichen Grasland durchzuführen. Die Ertragserfassung in den Leguminosen-Grasgemengen stellt einen wichtigen Beitrag zur Erstellung einer Ertragshistorie in den vielfältigen Fruchtfolgen des Ökologischen Landbaus dar und ermöglicht eine verbesserte Einschätzung von Produktionspotenzialen und Defizitarealen für ein standortangepasstes Management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to assess the effect of air-dried Moringa stenopetala leaf (MSL) supplementation on carcass components and meat quality in Arsi-Bale goats. A total of 24 yearling goats with initial body weight of 13.6+/-0.25 kg were randomly divided into four treatments with six goats each. All goats received a basal diet of natural grass hay ad libitum and 340 g head^(−1) d^(−1) concentrate. The treatment diets contain a control diet without supplementation (T1) and diets supplemented with MSL at a rate of 120 g head^(−1) d^(−1) (T2), 170 g head^(−1) d^(−1) (T3) and 220 g head^(−1) d^(−1) (T4). The results indicated that the average slaughter weight of goats reared on T3 and T4 was 18.2 and 18.3 kg, respectively, being (P<0.05) higher than those of T1 (15.8 kg) and T2 (16.5 kg). Goats fed on T3 and T4 diets had higher (P<0.05) daily weight gain compared with those of T1 and T2. The hot carcass weight in goats reared on T3 and T4 diets was 6.40 and 7.30 kg, respectively, being (P<0.05) higher than those of T1 (4.81 kg) and T2 (5.06 kg). Goats reared on T4 had higher (P<0.05) dressing percentage than those reared in other treatment diets. The rib-eye area in goats reared on T2, T3 and T4 diets was higher (P<0.05) than those of T1. The protein content of the meat in goats reared on T3 and T4 was 24.0 and 26.4%, respectively being significantly higher than those of T1 (19.1%) and T2 (20.1%). In conclusion, the supplementation of MSL to natural grass hay improved the weight gain and carcass parts of Arsi-Bale goats indicating Moringa leaves as alternative protein supplements to poor quality forages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inadequate quantity and quality of livestock feed is a persistent constraint to productivity for mixed crop-livestock farming in eastern Democratic Republic of Congo. To assess on-farm niches of improved forages, demonstration trials and participatory on-farm research were conducted in four different sites. Forage legumes included Canavalia brasiliensis (CIAT 17009), Stylosanthes guianensis (CIAT 11995) and Desmodium uncinatum (cv. Silverleaf), while grasses were Guatemala grass (Tripsacum andersonii), Napier grass (Pennisetum purpureum) French Cameroon, and a local Napier line. Within the first six months, forage legumes adapted differently to the four sites with little differences among varieties, while forage grasses displayed higher variability in biomass production among varieties than among sites. Farmers’ ranking largely corresponded to herbage yield from the first cut, preferring Canavalia, Silverleaf desmodium and Napier French Cameroon. Choice of forages and integration into farming systems depended on land availability, soil erosion prevalence and livestock husbandry system. In erosion prone sites, 55–60% of farmers planted grasses on field edges and 16–30% as hedgerows for erosion control. 43% of farmers grew forages as intercrop with food crops such as maize and cassava, pointing to land scarcity. Only in the site with lower land pressure, 71% of farmers grew legumes as pure stand. When land tenure was not secured and livestock freely roaming, 75% of farmers preferred to grow annual forage legumes instead of perennial grasses. Future research should develop robust decision support for spatial and temporal integration of forage technologies into diverse smallholder cropping systems and agro-ecologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.