3 resultados para Field evaluation

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In den letzten Jahrzehnten haben sich makroskalige hydrologische Modelle als wichtige Werkzeuge etabliert um den Zustand der globalen erneuerbaren Süßwasserressourcen flächendeckend bewerten können. Sie werden heutzutage eingesetzt um eine große Bandbreite wissenschaftlicher Fragestellungen zu beantworten, insbesondere hinsichtlich der Auswirkungen anthropogener Einflüsse auf das natürliche Abflussregime oder der Auswirkungen des globalen Wandels und Klimawandels auf die Ressource Wasser. Diese Auswirkungen lassen sich durch verschiedenste wasserbezogene Kenngrößen abschätzen, wie z.B. erneuerbare (Grund-)Wasserressourcen, Hochwasserrisiko, Dürren, Wasserstress und Wasserknappheit. Die Weiterentwicklung makroskaliger hydrologischer Modelle wurde insbesondere durch stetig steigende Rechenkapazitäten begünstigt, aber auch durch die zunehmende Verfügbarkeit von Fernerkundungsdaten und abgeleiteten Datenprodukten, die genutzt werden können, um die Modelle anzutreiben und zu verbessern. Wie alle makro- bis globalskaligen Modellierungsansätze unterliegen makroskalige hydrologische Simulationen erheblichen Unsicherheiten, die (i) auf räumliche Eingabedatensätze, wie z.B. meteorologische Größen oder Landoberflächenparameter, und (ii) im Besonderen auf die (oftmals) vereinfachte Abbildung physikalischer Prozesse im Modell zurückzuführen sind. Angesichts dieser Unsicherheiten ist es unabdingbar, die tatsächliche Anwendbarkeit und Prognosefähigkeit der Modelle unter diversen klimatischen und physiographischen Bedingungen zu überprüfen. Bisher wurden die meisten Evaluierungsstudien jedoch lediglich in wenigen, großen Flusseinzugsgebieten durchgeführt oder fokussierten auf kontinentalen Wasserflüssen. Dies steht im Kontrast zu vielen Anwendungsstudien, deren Analysen und Aussagen auf simulierten Zustandsgrößen und Flüssen in deutlich feinerer räumlicher Auflösung (Gridzelle) basieren. Den Kern der Dissertation bildet eine umfangreiche Evaluierung der generellen Anwendbarkeit des globalen hydrologischen Modells WaterGAP3 für die Simulation von monatlichen Abflussregimen und Niedrig- und Hochwasserabflüssen auf Basis von mehr als 2400 Durchflussmessreihen für den Zeitraum 1958-2010. Die betrachteten Flusseinzugsgebiete repräsentieren ein breites Spektrum klimatischer und physiographischer Bedingungen, die Einzugsgebietsgröße reicht von 3000 bis zu mehreren Millionen Quadratkilometern. Die Modellevaluierung hat dabei zwei Zielsetzungen: Erstens soll die erzielte Modellgüte als Bezugswert dienen gegen den jegliche weiteren Modellverbesserungen verglichen werden können. Zweitens soll eine Methode zur diagnostischen Modellevaluierung entwickelt und getestet werden, die eindeutige Ansatzpunkte zur Modellverbesserung aufzeigen soll, falls die Modellgüte unzureichend ist. Hierzu werden komplementäre Modellgütemaße mit neun Gebietsparametern verknüpft, welche die klimatischen und physiographischen Bedingungen sowie den Grad anthropogener Beeinflussung in den einzelnen Einzugsgebieten quantifizieren. WaterGAP3 erzielt eine mittlere bis hohe Modellgüte für die Simulation von sowohl monatlichen Abflussregimen als auch Niedrig- und Hochwasserabflüssen, jedoch sind für alle betrachteten Modellgütemaße deutliche räumliche Muster erkennbar. Von den neun betrachteten Gebietseigenschaften weisen insbesondere der Ariditätsgrad und die mittlere Gebietsneigung einen starken Einfluss auf die Modellgüte auf. Das Modell tendiert zur Überschätzung des jährlichen Abflussvolumens mit steigender Aridität. Dieses Verhalten ist charakteristisch für makroskalige hydrologische Modelle und ist auf die unzureichende Abbildung von Prozessen der Abflussbildung und –konzentration in wasserlimitierten Gebieten zurückzuführen. In steilen Einzugsgebieten wird eine geringe Modellgüte hinsichtlich der Abbildung von monatlicher Abflussvariabilität und zeitlicher Dynamik festgestellt, die sich auch in der Güte der Niedrig- und Hochwassersimulation widerspiegelt. Diese Beobachtung weist auf notwendige Modellverbesserungen in Bezug auf (i) die Aufteilung des Gesamtabflusses in schnelle und verzögerte Abflusskomponente und (ii) die Berechnung der Fließgeschwindigkeit im Gerinne hin. Die im Rahmen der Dissertation entwickelte Methode zur diagnostischen Modellevaluierung durch Verknüpfung von komplementären Modellgütemaßen und Einzugsgebietseigenschaften wurde exemplarisch am Beispiel des WaterGAP3 Modells erprobt. Die Methode hat sich als effizientes Werkzeug erwiesen, um räumliche Muster in der Modellgüte zu erklären und Defizite in der Modellstruktur zu identifizieren. Die entwickelte Methode ist generell für jedes hydrologische Modell anwendbar. Sie ist jedoch insbesondere für makroskalige Modelle und multi-basin Studien relevant, da sie das Fehlen von feldspezifischen Kenntnissen und gezielten Messkampagnen, auf die üblicherweise in der Einzugsgebietsmodellierung zurückgegriffen wird, teilweise ausgleichen kann.