9 resultados para Field equilibrium finite elements

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wir betrachten zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängi- gen Gebieten, wobei die Bewegung des Gebietsrandes bekannt ist. Die zeitliche Entwicklung des Gebietes wird durch die ALE-Formulierung behandelt, die die Nachteile der klassischen Euler- und Lagrange-Betrachtungsweisen behebt. Die Position des Randes und seine Geschwindigkeit werden dabei so in das Gebietsinnere fortgesetzt, dass starke Gitterdeformationen verhindert werden. Als Zeitdiskretisierungen höherer Ordnung werden stetige Galerkin-Petrov-Verfahren (cGP) und unstetige Galerkin-Verfahren (dG) auf Probleme in zeitabhängigen Gebieten angewendet. Weiterhin werden das C 1 -stetige Galerkin-Petrov-Verfahren und das C 0 -stetige Galerkin- Verfahren vorgestellt. Deren Lösungen lassen sich auch in zeitabhängigen Gebieten durch ein einfaches einheitliches Postprocessing aus der Lösung des cGP-Problems bzw. dG-Problems erhalten. Für Problemstellungen in festen Gebieten und mit zeitlich konstanten Konvektions- und Reaktionstermen werden Stabilitätsresultate sowie optimale Fehlerabschätzungen für die nachbereiteten Lösungen der cGP-Verfahren und der dG-Verfahren angegeben. Für zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten präsentieren wir konservative und nicht-konservative Formulierungen, wobei eine besondere Aufmerksamkeit der Behandlung der Zeitableitung und der Gittergeschwindigkeit gilt. Stabilität und optimale Fehlerschätzungen für die in der Zeit semi-diskretisierten konservativen und nicht-konservativen Formulierungen werden vorgestellt. Abschließend wird das volldiskretisierte Problem betrachtet, wobei eine Finite-Elemente-Methode zur Ortsdiskretisierung der Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten im ALE-Rahmen einbezogen wurde. Darüber hinaus wird eine lokale Projektionsstabilisierung (LPS) eingesetzt, um der Konvektionsdominanz Rechnung zu tragen. Weiterhin wird numerisch untersucht, wie sich die Approximation der Gebietsgeschwindigkeit auf die Genauigkeit der Zeitdiskretisierungsverfahren auswirkt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule H^2+_3 using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element distribution around the singularities and special elements. The accuracy of the results for the 1\sigma and 2\sigma orbitals is of the order of 10^-7 au.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensing with electromagnetic waves having frequencies in the Terahertz-range is a very attractive investigative method with applications in fundamental research and industrial settings. Up to now, a lot of sources and detectors are available. However, most of these systems are bulky and have to be used in controllable environments such as laboratories. In 1993 Dyakonov and Shur suggested that plasma waves developing in field-effect-transistors can be used to emit and detect THz-radiation. Later on, it was shown that these plasma waves lead to rectification and allows for building efficient detectors. In contrast to the prediction that these plasma waves lead to new promising solid-state sources, only a few weak sources are known up to now. This work studies THz plasma waves in semiconductor devices using the Monte Carlo method in order to resolve this issue. A fast Monte Carlo solver was developed implementing a nonparabolic bandstructure representation of the used semiconductors. By investigating simplified field-effect-transistors it was found that the plasma frequency follows under equilibrium conditions the analytical predictions. However, no current oscillations were found at room temperature or with a current flowing in the channel. For more complex structures, consisting of ungated and gated regions, it was found that the plasma frequency does not follow the value predicted by the dispersion relation of the gated nor the ungated device.