10 resultados para Factorial experiment designs.
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.
Resumo:
Soil fertility constraints to crop production have been recognized widely as a major obstacle to food security and agro-ecosystem sustainability in sub-Saharan West Africa. As such, they have led to a multitude of research projects and policy debates on how best they should be overcome. Conclusions, based on long-term multi-site experiments, are lacking with respect to a regional assessment of phosphorus and nitrogen fertilizer effects, surface mulched crop residues, and legume rotations on total dry matter of cereals in this region. A mixed model time-trend analysis was used to investigate the effects of four nitrogen and phosphorus rates, annually applied crop residue dry matter at 500 and 2000 kg ha^-1, and cereal-legume rotation versus continuous cereal cropping on the total dry matter of cereals and legumes. The multi-factorial experiment was conducted over four years at eight locations, with annual rainfall ranging from 510 to 1300 mm, in Niger, Burkina Faso, and Togo. With the exception of phosphorus, treatment effects on legume growth were marginal. At most locations, except for typical Sudanian sites with very low base saturation and high rainfall, phosphorus effects on cereal total dry matter were much lower with rock phosphate than with soluble phosphorus, unless the rock phosphate was combined with an annual seed-placement of 4 kg ha^-1 phosphorus. Across all other treatments, nitrogen effects were negligible at 500 mm annual rainfall but at 900 mm, the highest nitrogen rate led to total dry matter increases of up to 77% and, at 1300 mm, to 183%. Mulch-induced increases in cereal total dry matter were larger with lower base saturation, reaching 45% on typical acid sandy Sahelian soils. Legume rotation effects tended to increase over time but were strongly species-dependent.
Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa
Resumo:
Comparable data are lacking from the range of environments found in sub-Saharan West Africa to draw more general conclusions about the relative merits of locally available rockphosphate (RockP) in alleviating phosphorus (P) constraints to crop growth. To fill this gap, a multi-factorial field experiment was conducted over 4 years at eight locations in Niger, Burkina Faso and Togo. These ranged in annual rainfall from 510 to 1300 mm. Crops grown were pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays L.) either continuously or in rotation with cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). Crops were subjected to six P fertiliser treatments comprising RockP and soluble P at different rates and combined with 0 and 60 kg N ha^-1. For legumes, time trend analyses showed P-induced total dry matter (TDM) increases between 28 and 72% only with groundnut. Similarly, rotation-induced raises in cereal TDM compared to cereal monoculture were only observed with groundnut. For cereals, at the same rate of application, RockP was comparable to single superphosphate (SSP) only at two millet sites with topsoil pH-KCl <4.2 and annual average rainfall >600 mm. Across the eight sites NPK placement at 0.4 g P per hill raised average cereal yields between 26 and 220%. This was confirmed in 119 on-farm trials revealing P placement as a promising strategy to overcome P deficiency as the regionally most growth limiting nutrient constraint to cereals.
Resumo:
The most widely used methods to assess the nitrogen (N) status of winter wheat (Triticum aestivum L.) are the determination of plant total N by combustion, the testing of nitrate in the leaf tissue and the use of SPAD readings. However, due to their labor requirements or high costs these methods can hardly be applied to the huge wheat growing areas of the Northern China Plain. This study therefore examined an alternative method to measure the N status of wheat by using a digital camera to record the visible green light reflected from the plant canopy. The experiment was conducted near Beijing in a multi-factorial field trial with three levels of N. The intensity of green light reflected from the wheat canopy was compared to the total N concentration, to the nitrate concentration of the basal stem, and to the SPAD readings of leaves. The results show significant inverse relationships between greenness intensity, canopy total N, and SPAD readings at booting and flowering. At booting, sap nitrate <2000mgL^-1 was inversely related to greenness intensity and to sap nitrate concentration in the basal stem. At sap nitrate ~2000mgL^-1, the greenness intensity reached a plateau. At booting and flowering, significant inverse relationships between greenness intensity and shoot biomass were found. The results show the potential of the new method to assess the N status of winter wheat.
Resumo:
Absolute cross sections for the transitions of the Kr atom into the 4s^1 and 4p^4nl states of the Kr^+ ion were measured in the 4s-electron threshold region by photon-induced fluorescence spectroscopy (PIFS). The cross sections for the transitions of the Kr atom into the 4s^1 and 4p^4nl states were also calculated, as well as the 4p^4nln'l' doubly excited states, in the frame of LS-coupling many-body technique. The cross sections of the doubly-excited atomic states were used to illustrate the pronounced contributions of the latter to the photoionization process, evident from the measurements. The comparison of theory and experiment led to conclusions about the origin of the main features observed in the experiment.
Resumo:
In continuation of our previous work on the quintet transitions 1s2s2p^2 ^5 P-1s2s2p3d ^5 P^0, ^5 D^0, results on other n = 2 - n' = 3 quintet transitions for elements N, 0 and F are presented. Assignments have been established by comparison with Multi-Configuration Dirac-Fock calculations. High spectral resolution on beam-foil spectroscopy was essential for the identification of most of the lines. For some of the quintet lines decay curves were measured, and the lifetimes extracted were found to be in reasonable agreement with MCDF calculations.
Resumo:
Summary: Recent research on the evolution of language and verbal displays (e.g., Miller, 1999, 2000a, 2000b, 2002) indicated that language is not only the result of natural selection but serves as a sexually-selected fitness indicator that is an adaptation showing an individual’s suitability as a reproductive mate. Thus, language could be placed within the framework of concepts such as the handicap principle (Zahavi, 1975). There are several reasons for this position: Many linguistic traits are highly heritable (Stromswold, 2001, 2005), while naturally-selected traits are only marginally heritable (Miller, 2000a); men are more prone to verbal displays than women, who in turn judge the displays (Dunbar, 1996; Locke & Bogin, 2006; Lange, in press; Miller, 2000a; Rosenberg & Tunney, 2008); verbal proficiency universally raises especially male status (Brown, 1991); many linguistic features are handicaps (Miller, 2000a) in the Zahavian sense; most literature is produced by men at reproduction-relevant age (Miller, 1999). However, neither an experimental study investigating the causal relation between verbal proficiency and attractiveness, nor a study showing a correlation between markers of literary and mating success existed. In the current studies, it was aimed to fill these gaps. In the first one, I conducted a laboratory experiment. Videos in which an actor and an actress performed verbal self-presentations were the stimuli for counter-sex participants. Content was always alike, but the videos differed on three levels of verbal proficiency. Predictions were, among others, that (1) verbal proficiency increases mate value, but that (2) this applies more to male than to female mate value due to assumed past sex-different selection pressures causing women to be very demanding in mate choice (Trivers, 1972). After running a two-factorial analysis of variance with the variables sex and verbal proficiency as factors, the first hypothesis was supported with high effect size. For the second hypothesis, there was only a trend going in the predicted direction. Furthermore, it became evident that verbal proficiency affects long-term more than short-term mate value. In the second study, verbal proficiency as a menstrual cycle-dependent mate choice criterion was investigated. Basically the same materials as in the former study were used with only marginal changes in the used questionnaire. The hypothesis was that fertile women rate high verbal proficiency in men higher than non-fertile women because of verbal proficiency being a potential indicator of “good genes”. However, no significant result could be obtained in support of the hypothesis in the current study. In the third study, the hypotheses were: (1) most literature is produced by men at reproduction-relevant age. (2) The more works of high literary quality a male writer produces, the more mates and children he has. (3) Lyricists have higher mating success than non-lyric writers because of poetic language being a larger handicap than other forms of language. (4) Writing literature increases a man’s status insofar that his offspring shows a significantly higher male-to-female sex ratio than in the general population, as the Trivers-Willard hypothesis (Trivers & Willard, 1973) applied to literature predicts. In order to test these hypotheses, two famous literary canons were chosen. Extensive biographical research was conducted on the writers’ mating successes. The first hypothesis was confirmed; the second one, controlling for life age, only for number of mates but not entirely regarding number of children. The latter finding was discussed with respect to, among others, the availability of effective contraception especially in the 20th century. The third hypothesis was not satisfactorily supported. The fourth hypothesis was partially supported. For the 20th century part of the German list, the secondary sex ratio differed with high statistical significance from the ratio assumed to be valid for a general population.
Resumo:
The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity.