5 resultados para Face processing research
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Summary - Cooking banana is one of the most important crops in Uganda; it is a staple food and source of household income in rural areas. The most common cooking banana is locally called matooke, a Musa sp triploid acuminate genome group (AAA-EAHB). It is perishable and traded in fresh form leading to very high postharvest losses (22-45%). This is attributed to: non-uniform level of harvest maturity, poor handling, bulk transportation and lack of value addition/processing technologies, which are currently the main challenges for trade and export, and diversified utilization of matooke. Drying is one of the oldest technologies employed in processing of agricultural produce. A lot of research has been carried out on drying of fruits and vegetables, but little information is available on matooke. Drying of matooke and milling it to flour extends its shelf-life is an important means to overcome the above challenges. Raw matooke flour is a generic flour developed to improve shelf stability of the fruit and to find alternative uses. It is rich in starch (80 - 85%db) and subsequently has a high potential as a calorie resource base. It possesses good properties for both food and non-food industrial use. Some effort has been done to commercialize the processing of matooke but there is still limited information on its processing into flour. It was imperative to carry out an in-depth study to bridge the following gaps: lack of accurate information on the maturity window within which matooke for processing into flour can be harvested leading to non-uniform quality of matooke flour; there is no information on moisture sorption isotherm for matooke from which the minimum equilibrium moisture content in relation to temperature and relative humidity is obtainable, below which the dry matooke would be microbiologically shelf-stable; and lack of information on drying behavior of matooke and standardized processing parameters for matooke in relation to physicochemical properties of the flour. The main objective of the study was to establish the optimum harvest maturity window and optimize the processing parameters for obtaining standardized microbiologically shelf-stable matooke flour with good starch quality attributes. This research was designed to: i) establish the optimum maturity harvest window within which matooke can be harvested to produce a consistent quality of matooke flour, ii) establish the sorption isotherms for matooke, iii) establish the effect of process parameters on drying characteristics of matooke, iv) optimize the drying process parameters for matooke, v) validate the models of maturity and optimum process parameters and vi) standardize process parameters for commercial processing of matooke. Samples were obtained from a banana plantation at Presidential Initiative on Banana Industrial Development (PIBID), Technology Business Incubation Center (TBI) at Nyaruzunga – Bushenyi in Western Uganda. A completely randomized design (CRD) was employed in selecting the banana stools from which samples for the experiments were picked. The cultivar Mbwazirume which is soft cooking and commonly grown in Bushenyi was selected for the study. The static gravitation method recommended by COST 90 Project (Wolf et al., 1985), was used for determination of moisture sorption isotherms. A research dryer developed for this research. All experiments were carried out in laboratories at TBI. The physiological maturity of matooke cv. mbwazirume at Bushenyi is 21 weeks. The optimum harvest maturity window for commercial processing of matooke flour (Raw Tooke Flour - RTF) at Bushenyi is between 15-21 weeks. The finger weight model is recommended for farmers to estimate harvest maturity for matooke and the combined model of finger weight and pulp peel ratio is recommended for commercial processors. Matooke isotherms exhibited type II curve behavior which is characteristic of foodstuffs. The GAB model best described all the adsorption and desorption moisture isotherms. For commercial processing of matooke, in order to obtain a microbiologically shelf-stable dry product. It is recommended to dry it to moisture content below or equal to 10% (wb). The hysteresis phenomenon was exhibited by the moisture sorption isotherms for matooke. The isoteric heat of sorption for both adsorptions and desorption isotherms increased with decreased moisture content. The total isosteric heat of sorption for matooke: adsorption isotherm ranged from 4,586 – 2,386 kJ/kg and desorption isotherm from 18,194– 2,391 kJ/kg for equilibrium moisture content from 0.3 – 0.01 (db) respectively. The minimum energy required for drying matooke from 80 – 10% (wb) is 8,124 kJ/kg of water removed. Implying that the minimum energy required for drying of 1 kg of fresh matooke from 80 - 10% (wb) is 5,793 kJ. The drying of matooke takes place in three steps: the warm-up and the two falling rate periods. The drying rate constant for all processing parameters ranged from 5,793 kJ and effective diffusivity ranged from 1.5E-10 - 8.27E-10 m2/s. The activation energy (Ea) for matooke was 16.3kJ/mol (1,605 kJ/kg). Comparing the activation energy (Ea) with the net isosteric heat of sorption for desorption isotherm (qst) (1,297.62) at 0.1 (kg water/kg dry matter), indicated that Ea was higher than qst suggesting that moisture molecules travel in liquid form in matooke slices. The total color difference (ΔE*) between the fresh and dry samples, was lowest for effect of thickness of 7 mm, followed by air velocity of 6 m/s, and then drying air temperature at 70˚C. The drying system controlled by set surface product temperature, reduced the drying time by 50% compared to that of a drying system controlled by set air drying temperature. The processing parameters did not have a significant effect on physicochemical and quality attributes, suggesting that any drying air temperature can be used in the initial stages of drying as long as the product temperature does not exceed gelatinization temperature of matooke (72˚C). The optimum processing parameters for single-layer drying of matooke are: thickness = 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode. From practical point of view it is recommended that for commercial processing of matooke, to employ multi-layer drying of loading capacity equal or less than 7 kg/m², thickness 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode.
Resumo:
Die Wissenschaft weist im Zuge der Entwicklung von der Industrie- zu einer Wissensgesellschaft einschneidende Veränderungen in der Wissensordnung auf, welche sich bis hin zu einem zunehmenden Verlust der wissenschaftlichen Selbststeuerungsmechanismen bemerkbar machen und einen veränderten Umgang mit dem generierten Wissensschatz erfordern. Nicht nur Änderungen in der Wissensordnung und -produktion stellen die Psychoanalyse vor neue Herausforderungen: In den letzten Jahrzehnten geriet sie als Wissenschaft und Behandlungsverfahren zunehmend in die Kritik und reagierte mit einer konstruktiven Diskussion um ein dem Forschungsgegenstand – die Untersuchung unbewusster Prozesse und Fantasien – adäquates psychoanalytisches Forschungsverständnis. Die Auseinandersetzung mit Forderungen gesellschaftlicher Geldgeber, politischer Vertreter und Interessensgruppen wie auch der wissenschaftlichen Community stellt die Psychoanalyse vor besondere Herausforderungen. Um wissenschaftsexternen wie -internen Gütekriterien zu genügen, ist häufig ein hoher personeller, materieller, finanzieller, methodischer wie organisatorischer Aufwand unabdingbar, wie das Beispiel des psychoanalytischen Forschungsinstitutes Sigmund-Freud-Institut zeigt. Der steigende Aufwand schlägt sich in einer zunehmenden Komplexität des Forschungsprozesses nieder, die unter anderem in den vielschichtigen Fragestellungen und Zielsetzungen, dem vermehrt interdisziplinären, vernetzten Charakter, dem Umgang mit dem umfangreichen, hochspezialisierten Wissen, der Methodenvielfalt, etc. begründet liegt. Um jener Komplexität des Forschungsprozesses gerecht zu werden, ist es zunehmend erforderlich, Wege des Wissensmanagement zu beschreiten. Tools wie z. B. Mapping-Verfahren stellen unterstützende Werkzeuge des Wissensmanagements dar, um den Herausforderungen des Forschungsprozesses zu begegnen. In der vorliegenden Arbeit werden zunächst die veränderten Forschungsbedingungen und ihre Auswirkungen auf die Komplexität des Forschungsprozesses - insbesondere auch des psychoanalytischen Forschungsprozesses - reflektiert. Die mit der wachsenden Komplexität einhergehenden Schwierigkeiten und Herausforderungen werden am Beispiel eines interdisziplinär ausgerichteten EU-Forschungsprojektes näher illustriert. Um dieser wachsenden Komplexität psychoanalytischer Forschung erfolgreich zu begegnen, wurden in verschiedenen Forschungsprojekten am Sigmund-Freud-Institut Wissensmanagement-Maßnahmen ergriffen. In der vorliegenden Arbeit wird daher in einem zweiten Teil zunächst auf theoretische Aspekte des Wissensmanagements eingegangen, die die Grundlage der eingesetzten Wissensmanagement-Instrumente bildeten. Dabei spielen insbesondere psychologische Aspekte des Wissensmanagements eine zentrale Rolle. Zudem werden die konkreten Wissensmanagement-Tools vorgestellt, die in den verschiedenen Forschungsprojekten zum Einsatz kamen, um der wachsenden Komplexität psychoanalytischer Forschung zu begegnen. Abschließend werden die Hauptthesen der vorliegenden Arbeit noch einmal reflektiert und die geschilderten Techniken des Wissensmanagements im Hinblick auf ihre Vor- und Nachteile kritisch diskutiert.
Resumo:
Climate change remains a major challenge for today’s and future societies due to its immense impacts on human lives and the natural environment. This thesis investigates the extent to which individuals are willing and prepared to voluntarily contribute to climate protection and to adjust to new climatic conditions in order to cope with the consequences of climate change and reduce the severity of potential negative impacts. The thesis thereby combines research in the fields of the private provision of environmental public goods and adaptation to climate change, which is still widely unconnected in the existing literature. The six contributions of this thesis mainly focus on microeconometric analyses using data from international surveys in China, Germany, and the USA. The main findings are: (i) A substantial share of individuals is willing to voluntarily contribute to climate protection and to adapt to climatic change. The engagement in both strategies is positively interrelated at the individual level and the analyses reveal hardly any evidence that adaptation activities crowd out individuals’ incentives to engage in climate protection. (ii) The main determinants of individuals’ adaptation activities seem to be the subjective risk perception as well as socio-economic and socio-demographic characteristics like age, gender, education, and income, while their climate protection efforts are found to be broadly motivated by financial advantages from these activities and additional immaterial benefits. (iii) The empirical findings also suggest a significantly positive relationship between certain climate protection activities. Substitutions are found to occur merely if one measure is perceived to be more effective in providing climate protection or if individuals have high environmental preferences. (iv) This thesis further reveals a common understanding of a (normatively) fair burden-sharing in international climate policy across citizens in China, Germany, and the USA. The highest preferences are found for the accountability principle.
Resumo:
In composite agricultural materials such as grass, tee, medicinal plants; leaves and stems have a different drying time. By this behavior, after leaving the dryer, the stems may have greater moisture content than desired, while the leaves one minor, which can cause either the appearance of fungi or the collapse of the over-dried material. Taking into account that a lot of grass is dehydrated in forced air dryers, especially rotary drum dryers, this research was developed in order to establish conditions enabling to make a separation of the components during the drying process in order to provide a homogeneous product at the end. For this, a rotary dryer consisting of three concentric cylinders and a circular sieve aligned with the more internal cylinder was proposed; so that, once material enters into the dryer in the area of the inner cylinder, stems pass through sieve to the middle and then continue towards the external cylinder, while the leaves continue by the inner cylinder. For this project, a mixture of Ryegrass and White Clover was used. The characteristics of the components of a mixture were: Drying Rate in thin layer and in rotation, Bulk density, Projected Area, Terminal velocity, weight/Area Ratio, Flux through Rotary sieve. Three drying temperatures; 40°C, 60° C and 80° C, and three rotation speeds; 10 rpm, 20 rpm and 40 rpm were evaluated. It was found that the differences in drying time are the less at 80 °C when the dryer rotates at 40 rpm. Above this speed, the material adheres to the walls of the dryer or sieve and does not flow. According to the measurements of terminal velocity of stems and leaves of the components of the mixture, the speed of the air should be less than 1.5 m s-1 in the inner drum for the leaves and less than 4.5 m s-1 in middle and outer drums for stems, in such way that only the rotational movement of the dryer moves the material and achieves a greater residence time. In other hand, the best rotary sieve separation efficiencies were achieved when the material is dry, but the results are good in all the moisture contents. The best rotary speed of sieve is within the critical rotational speed, i.e. 20 rpm. However, the rotational speed of the dryer, including the sieve in line with the inner cylinder should be 10 rpm or less in order to achieve the greatest residence times of the material inside the dryer and the best agitation through the use of lifting flights. With a finite element analysis of a dryer prototype, using an air flow allowing speeds of air already stated, I was found that the best performance occurs when, through a cover, air enters the dryer front of the Middle cylinder and when the inner cylinder is formed in its entirety through a sieve. This way, air flows in almost equal amounts by both the middle and external cylinders, while part of the air in the Middle cylinder passes through the sieve towards the inner cylinder. With this, leaves do not adhere to the sieve and flow along drier, thanks to the rotating movement of the drums and the showering caused by the lifting flights. In these conditions, the differences in drying time are reduced to 60 minutes, but the residence time is higher for the stems than for leaves, therefore the components of the mixture of grass run out of the dryer with the same desired moisture content.