4 resultados para Explanatory Variables Effect
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
At the Institute of Structural Engineering of the Faculty of Civil Engineering, Kassel University, series tests of slab-column connection were carried out, subjected to concentrated punching load. The effects of steel fiber content, concrete compressive strength, tension reinforcement ratio, size effect, and yield stress of tension reinforcement were studied by testing a total of six UHPC slabs and one normal strength concrete slab. Based on experimental results; all the tested slabs failed in punching shear as a type of failure, except the UHPC slab without steel fiber which failed due to splitting of concrete cover. The post ultimate load-deformation behavior of UHPC slabs subjected to punching load shows harmonic behavior of three stages; first, drop of load-deflection curve after reaching maximum load, second, resistance of both steel fibers and tension reinforcement, and third, pure tension reinforcement resistance. The first shear crack of UHPC slabs starts to open at a load higher than that of normal strength concrete slabs. Typically, the diameter of the punching cone for UHPC slabs on the tension surface is larger than that of NSC slabs and the location of critical shear crack is far away from the face of the column. The angle of punching cone for NSC slabs is larger than that of UHPC slabs. For UHPC slabs, the critical perimeter is proposed and located at 2.5d from the face of the column. The final shape of the punching cone is completed after the tension reinforcement starts to yield and the column stub starts to penetrate through the slab. A numerical model using Finite Element Analysis (FEA) for UHPC slabs is presented. Also some variables effect on punching shear is demonstrated by a parametric study. A design equation for UHPC slabs under punching load is presented and shown to be applicable for a wide range of parametric variations; in the ranges between 40 mm to 300 mm in slab thickness, 0.1 % to 2.9 % in tension reinforcement ratio, 150 MPa to 250 MPa in compressive strength of concrete and 0.1 % to 2 % steel fiber content. The proposed design equation of UHPC slabs is modified to include HSC and NSC slabs without steel fiber, and it is checked with the test results from earlier researches.
Resumo:
There are several factors that affect piglet survival and this has a bearing on sow productivity. Ten variables that influence pre-weaning vitality were analysed using records from the Pig Industry Board, Zimbabwe. These included individual piglet birth weight, piglet origin (nursed in original litter or fostered), sex, relative birth weight expressed as standard deviation units, sow parity, total number of piglets born, year and month of farrowing, within-litter variability and the presence of stillborn or mummified littermates. The main factors that influenced piglet mortality were fostering, parity and within-litter variability especially the weight of the individual piglet relative to the average of the litter (P<0.05). Presence of a mummified or stillborn littermate, which could be a proxy for unfavourable uterine environment or trauma during the birth process, did not influence pre-weaning mortality. Variability within a litter and the deviation of the weight of an individual piglet from the litter mean, influenced survival to weaning. It is, therefore, advisable for breeders to include uniformity within the litter as a selection criterion. The recording of various variables by farmers seems to be a useful management practice to identify piglets at risk so as to establish palliative measures. Further, farmers should know which litters and which piglets within a litter are at risk and require more attention.
Resumo:
Landnutzungsänderungen sind eine wesentliche Ursache von Treibhausgasemissionen. Die Umwandlung von Ökosystemen mit permanenter natürlicher Vegetation hin zu Ackerbau mit zeitweise vegetationslosem Boden (z.B. nach der Bodenbearbeitung vor der Aussaat) führt häufig zu gesteigerten Treibhausgasemissionen und verminderter Kohlenstoffbindung. Weltweit dehnt sich Ackerbau sowohl in kleinbäuerlichen als auch in agro-industriellen Systemen aus, häufig in benachbarte semiaride bis subhumide Rangeland Ökosysteme. Die vorliegende Arbeit untersucht Trends der Landnutzungsänderung im Borana Rangeland Südäthiopiens. Bevölkerungswachstum, Landprivatisierung und damit einhergehende Einzäunung, veränderte Landnutzungspolitik und zunehmende Klimavariabilität führen zu raschen Veränderungen der traditionell auf Tierhaltung basierten, pastoralen Systeme. Mittels einer Literaturanalyse von Fallstudien in ostafrikanischen Rangelands wurde im Rahmen dieser Studie ein schematisches Modell der Zusammenhänge von Landnutzung, Treibhausgasemissionen und Kohlenstofffixierung entwickelt. Anhand von Satellitendaten und Daten aus Haushaltsbefragungen wurden Art und Umfang von Landnutzungsänderungen und Vegetationsveränderungen an fünf Untersuchungsstandorten (Darito/Yabelo Distrikt, Soda, Samaro, Haralo, Did Mega/alle Dire Distrikt) zwischen 1985 und 2011 analysiert. In Darito dehnte sich die Ackerbaufläche um 12% aus, überwiegend auf Kosten von Buschland. An den übrigen Standorten blieb die Ackerbaufläche relativ konstant, jedoch nahm Graslandvegetation um zwischen 16 und 28% zu, während Buschland um zwischen 23 und 31% abnahm. Lediglich am Standort Haralo nahm auch „bare land“, vegetationslose Flächen, um 13% zu. Faktoren, die zur Ausdehnung des Ackerbaus führen, wurden am Standort Darito detaillierter untersucht. GPS Daten und anbaugeschichtlichen Daten von 108 Feldern auf 54 Betrieben wurden in einem Geographischen Informationssystem (GIS) mit thematischen Boden-, Niederschlags-, und Hangneigungskarten sowie einem Digitales Höhenmodell überlagert. Multiple lineare Regression ermittelte Hangneigung und geographische Höhe als signifikante Erklärungsvariablen für die Ausdehnung von Ackerbau in niedrigere Lagen. Bodenart, Entfernung zum saisonalen Flusslauf und Niederschlag waren hingegen nicht signifikant. Das niedrige Bestimmtheitsmaß (R²=0,154) weist darauf hin, dass es weitere, hier nicht erfasste Erklärungsvariablen für die Richtung der räumlichen Ausweitung von Ackerland gibt. Streudiagramme zu Ackergröße und Anbaujahren in Relation zu geographischer Höhe zeigen seit dem Jahr 2000 eine Ausdehnung des Ackerbaus in Lagen unter 1620 müNN und eine Zunahme der Schlaggröße (>3ha). Die Analyse der phänologischen Entwicklung von Feldfrüchten im Jahresverlauf in Kombination mit Niederschlagsdaten und normalized difference vegetation index (NDVI) Zeitreihendaten dienten dazu, Zeitpunkte besonders hoher (Begrünung vor der Ernte) oder niedriger (nach der Bodenbearbeitung) Pflanzenbiomasse auf Ackerland zu identifizieren, um Ackerland und seine Ausdehnung von anderen Vegetationsformen fernerkundlich unterscheiden zu können. Anhand der NDVI Spektralprofile konnte Ackerland gut Wald, jedoch weniger gut von Gras- und Buschland unterschieden werden. Die geringe Auflösung (250m) der Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI Daten führte zu einem Mixed Pixel Effect, d.h. die Fläche eines Pixels beinhaltete häufig verschiedene Vegetationsformen in unterschiedlichen Anteilen, was deren Unterscheidung beeinträchtigte. Für die Entwicklung eines Echtzeit Monitoring Systems für die Ausdehnung des Ackerbaus wären höher auflösende NDVI Daten (z.B. Multispektralband, Hyperion EO-1 Sensor) notwendig, um kleinräumig eine bessere Differenzierung von Ackerland und natürlicher Rangeland-Vegetation zu erhalten. Die Entwicklung und der Einsatz solcher Methoden als Entscheidungshilfen für Land- und Ressourcennutzungsplanung könnte dazu beitragen, Produktions- und Entwicklungsziele der Borana Landnutzer mit nationalen Anstrengungen zur Eindämmung des Klimawandels durch Steigerung der Kohlenstofffixierung in Rangelands in Einklang zu bringen.
Resumo:
The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.