2 resultados para Equivalent Effective Temperature

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.