6 resultados para Enrico Fermi Atomic Power Plant (Mich.)
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.
Resumo:
Die Maßnahmen zur Förderung der Windenergie in Deutschland haben wichtige Anstöße zur technologischen Weiterentwicklung geliefert und die Grundlagen für den enormen Anlagenzubau geschaffen. Die installierte Windleistung hat heute eine beachtliche Größenordnung erreicht und ein weiteres Wachstum in ähnlichen Dimensionen ist auch für die nächsten Jahre zu erwarten. Die aus Wind erzeugte elektrische Leistung deckt bereits heute in einigen Netzbereichen die Netzlast zu Schwachlastzeiten. Dies zeigt, dass die Windenergie ein nicht mehr zu vernachlässigender Faktor in der elektrischen Energieversorgung geworden ist. Im Rahmen der Kraftwerkseinsatzplanung sind Betrag und Verlauf der Windleistung des folgenden Tages mittlerweile zu wichtigen und zugleich schwierig zu bestimmenden Variablen geworden. Starke Schwankungen und falsche Prognosen der Windstromeinspeisung verursachen zusätzlichen Bedarf an Regel- und Ausgleichsleistung durch die Systemführung. Das im Rahmen dieser Arbeit entwickelte Prognosemodell liefert die zu erwartenden Windleistungen an 16 repräsentativen Windparks bzw. Gruppen von Windparks für bis zu 48 Stunden im Voraus. Aufgrund von prognostizierten Wetterdaten des deutschen Wetterdienstes (DWD) werden die Leistungen der einzelnen Windparks mit Hilfe von künstlichen neuronalen Netzen (KNN) berechnet. Diese Methode hat gegenüber physikalischen Verfahren den Vorteil, dass der komplexe Zusammenhang zwischen Wettergeschehen und Windparkleistung nicht aufwendig analysiert und detailliert mathematisch beschrieben werden muss, sondern anhand von Daten aus der Vergangenheit von den KNN gelernt wird. Das Prognosemodell besteht aus zwei Modulen. Mit dem ersten wird, basierend auf den meteorologischen Vorhersagen des DWD, eine Prognose für den Folgetag erstellt. Das zweite Modul bezieht die online gemessenen Leistungsdaten der repräsentativen Windparks mit ein, um die ursprüngliche Folgetagsprognose zu verbessern und eine sehr genaue Kurzzeitprognose für die nächsten drei bis sechs Stunden zu berechnen. Mit den Ergebnissen der Prognosemodule für die repräsentativen Standorte wird dann über ein Transformationsmodell, dem so genannten Online-Modell, die Gesamteinspeisung in einem größeren Gebiet berechnet. Das Prognoseverfahren hat seine besonderen Vorzüge in der Genauigkeit, den geringen Rechenzeiten und den niedrigen Betriebskosten, da durch die Verwendung des bereits implementierten Online-Modells nur eine geringe Anzahl von Vorhersage- und Messstandorten benötigt wird. Das hier vorgestellte Prognosemodell wurde ursprünglich für die E.ON-Netz GmbH entwickelt und optimiert und ist dort seit Juli 2001 im Einsatz. Es lässt sich jedoch auch leicht an andere Gebiete anpassen. Benötigt werden dazu nur die Messdaten der Leistung ausgewählter repräsentativer Windparks sowie die dazu gehörenden Wettervorhersagen, um die KNN entsprechend zu trainieren.
Resumo:
In dieser Arbeit werden verschiedene Computermodelle, Rechenverfahren und Methoden zur Unterstützung bei der Integration großer Windleistungen in die elektrische Energieversorgung entwickelt. Das Rechenmodell zur Simulation der zeitgleich eingespeisten Windenergie erzeugt Summenganglinien von beliebig zusammengestellten Gruppen von Windenergieanlagen, basierend auf gemessenen Wind- und Leistungsdaten der nahen Vergangenheit. Dieses Modell liefert wichtige Basisdaten für die Analyse der Windenergieeinspeisung auch für zukünftige Szenarien. Für die Untersuchung der Auswirkungen von Windenergieeinspeisungen großräumiger Anlagenverbünde im Gigawattbereich werden verschiedene statistische Analysen und anschauliche Darstellungen erarbeitet. Das im Rahmen dieser Arbeit entwickelte Modell zur Berechnung der aktuell eingespeisten Windenergie aus online gemessenen Leistungsdaten repräsentativer Windparks liefert wertvolle Informationen für die Leistungs- und Frequenzregelung der Netzbetreiber. Die zugehörigen Verfahren zur Ermittlung der repräsentativen Standorte und zur Überprüfung der Repräsentativität bilden die Grundlage für eine genaue Abbildung der Windenergieeinspeisung für größere Versorgungsgebiete, basierend auf nur wenigen Leistungsmessungen an Windparks. Ein weiteres wertvolles Werkzeug für die optimale Einbindung der Windenergie in die elektrische Energieversorgung bilden die Prognosemodelle, die die kurz- bis mittelfristig zu erwartende Windenergieeinspeisung ermitteln. In dieser Arbeit werden, aufbauend auf vorangegangenen Forschungsarbeiten, zwei, auf Künstlich Neuronalen Netzen basierende Modelle vorgestellt, die den zeitlichen Verlauf der zu erwarten Windenergie für Netzregionen und Regelzonen mit Hilfe von gemessenen Leistungsdaten oder prognostizierten meteorologischen Parametern zur Verfügung stellen. Die softwaretechnische Zusammenfassung des Modells zur Berechnung der aktuell eingespeisten Windenergie und der Modelle für die Kurzzeit- und Folgetagsprognose bietet eine attraktive Komplettlösung für die Einbindung der Windenergie in die Leitwarten der Netzbetreiber. Die dabei entwickelten Schnittstellen und die modulare Struktur des Programms ermöglichen eine einfache und schnelle Implementierung in beliebige Systemumgebungen. Basierend auf der Leistungsfähigkeit der Online- und Prognosemodelle werden Betriebsführungsstrategien für zu Clustern im Gigawattbereich zusammengefasste Windparks behandelt, die eine nach ökologischen und betriebswirtschaftlichen Gesichtspunkten sowie nach Aspekten der Versorgungssicherheit optimale Einbindung der geplanten Offshore-Windparks ermöglichen sollen.
Resumo:
Sowohl die Ressourcenproblematik als auch die drohenden Ausmaße der Klimaänderung lassen einen Umstieg auf andere Energiequellen langfristig unausweichlich erscheinen und mittelfristig als dringend geboten. Unabhängig von der Frage, auf welchem Niveau sich der Energiebedarf stabilisieren lässt, bleibt dabei zu klären, welche Möglichkeiten sich aus technischer und wirtschaftlicher Sicht in Zukunft zur Deckung unseres Energiebedarfs anbieten. Eine aussichtsreiche Option besteht in der Nutzung regenerativer Energien in ihrer ganzen Vielfalt. Die Arbeit "Szenarien zur zukünftigen Stromversorgung, kostenoptimierte Variationen zur Versorgung Europas und seiner Nachbarn mit Strom aus erneuerbaren Energien" konzentriert sich mit der Stromversorgung auf einen Teilaspekt der Energieversorgung, der zunehmend an Wichtigkeit gewinnt und als ein Schlüssel zur nachhaltigen Energieversorgung interpretiert werden kann. Die Stromversorgung ist heute weltweit für etwa die Hälfte des anthropogenen CO2-Ausstoßes verantwortlich. In dieser Arbeit wurden anhand verschiedener Szenarien Möglichkeiten einer weitgehend CO2–neutralen Stromversorgung für Europa und seine nähere Umgebung untersucht, wobei das Szenariogebiet etwa 1,1 Mrd. Einwohner und einen Stromverbrauch von knapp 4000 TWh/a umfasst. Dabei wurde untersucht, wie die Stromversorgung aufgebaut sein sollte, damit sie möglichst kostengünstig verwirklicht werden kann. Diese Frage wurde beispielsweise für Szenarien untersucht, in denen ausschließlich heute marktverfügbare Techniken berücksichtigt wurden. Auch der Einfluss der Nutzung einiger neuer Technologien, die bisher noch in Entwicklung sind, auf die optimale Gestaltung der Stromversorgung, wurde anhand einiger Beispiele untersucht. Die Konzeption der zukünftigen Stromversorgung sollte dabei nach Möglichkeit objektiven Kriterien gehorchen, die auch die Vergleichbarkeit verschiedener Versorgungsansätze gewährleisten. Dafür wurde ein Optimierungsansatz gewählt, mit dessen Hilfe sowohl bei der Konfiguration als auch beim rechnerischen Betrieb des Stromversorgungssystems weitgehend auf subjektive Entscheidungsprozesse verzichtet werden kann. Die Optimierung hatte zum Ziel, für die definierte möglichst realitätsnahe Versorgungsaufgabe den idealen Kraftwerks- und Leitungspark zu bestimmen, der eine kostenoptimale Stromversorgung gewährleistet. Als Erzeugungsoptionen werden dabei u.a. die Nutzung Regenerativer Energien durch Wasserkraftwerke, Windenergiekonverter, Fallwindkraftwerke, Biomassekraftwerke sowie solare und geothermische Kraftwerke berücksichtigt. Abhängig von den gewählten Randbedingungen ergaben sich dabei unterschiedliche Szenarien. Das Ziel der Arbeit war, mit Hilfe unterschiedlicher Szenarien eine breite Basis als Entscheidungsgrundlage für zukünftige politische Weichenstellungen zu schaffen. Die Szenarien zeigen Optionen für eine zukünftige Gestaltung der Stromversorgung auf, machen Auswirkungen verschiedener – auch politischer – Rahmenbedingungen deutlich und stellen so die geforderte Entscheidungsgrundlage bereit. Als Grundlage für die Erstellung der Szenarien mussten die verschiedenen Potentiale erneuerbarer Energien in hoher zeitlicher und räumlicher Auflösung ermittelt werden, mit denen es erstmals möglich war, die Fragen einer großräumigen regenerativen Stromversorgung ohne ungesicherte Annahmen anhand einer verlässlichen Datengrundlage anzugehen. Auch die Charakteristika der verschiedensten Energiewandlungs- und Transportsysteme mussten studiert werden und sind wie deren Kosten und die verschiedenen Potentiale in der vorliegenden Arbeit ausführlich diskutiert. Als Ausgangsszenario und Bezugspunkt dient ein konservatives Grundszenario. Hierbei handelt es sich um ein Szenario für eine Stromversorgung unter ausschließlicher Nutzung erneuerbarer Energien, die wiederum ausschließlich auf heute bereits entwickelte Technologien zurückgreift und dabei für alle Komponenten die heutigen Kosten zugrundelegt. Dieses Grundszenario ist dementsprechend auch als eine Art konservative Worst-Case-Abschätzung für unsere Zukunftsoptionen bei der regenerativen Stromversorgung zu verstehen. Als Ergebnis der Optimierung basiert die Stromversorgung beim Grundszenario zum größten Teil auf der Stromproduktion aus Windkraft. Biomasse und schon heute bestehende Wasserkraft übernehmen den überwiegenden Teil der Backup-Aufgaben innerhalb des – mit leistungsstarker HGÜ (Hochspannungs–Gleichstrom–Übertragung) verknüpften – Stromversorgungsgebiets. Die Stromgestehungskosten liegen mit 4,65 €ct / kWh sehr nahe am heute Üblichen. Sie liegen niedriger als die heutigen Preisen an der Strombörse. In allen Szenarien – außer relativ teuren, restriktiv ”dezentralen” unter Ausschluss großräumig länderübergreifenden Stromtransports – spielt der Stromtransport eine wichtige Rolle. Er wird genutzt, um Ausgleichseffekte bei der dargebotsabhängigen Stromproduktion aus erneuerbaren Quellen zu realisieren, gute kostengünstige Potentiale nutzbar zu machen und um die Speicherwasserkraft sowie die dezentral genutzte Biomasse mit ihrer Speicherfähigkeit für großräumige Backup-Aufgaben zu erschließen. Damit erweist sich der Stromtransport als einer der Schlüssel zu einer kostengünstigen Stromversorgung. Dies wiederum kann als Handlungsempfehlung bei politischen Weichenstellungen interpretiert werden, die demnach gezielt auf internationale Kooperation im Bereich der Nutzung erneuerbarer Energien setzen und insbesondere den großräumigen Stromtransport mit einbeziehen sollten. Die Szenarien stellen detaillierte und verlässliche Grundlagen für wichtige politische und technologische Zukunftsentscheidungen zur Verfügung. Sie zeigen, dass bei internationaler Kooperation selbst bei konservativen Annahmen eine rein regenerative Stromversorgung möglich ist, die wirtschaftlich ohne Probleme zu realisieren wäre und verweisen den Handlungsbedarf in den Bereich der Politik. Eine wesentliche Aufgabe der Politik läge darin, die internationale Kooperation zu organisieren und Instrumente für eine Umgestaltung der Stromversorgung zu entwickeln. Dabei kann davon ausgegangen werden, dass nicht nur ein sinnvoller Weg zu einer CO2–neutralen Stromversorgung beschritten würde, sondern sich darüber hinaus ausgezeichnete Entwicklungsperspektiven für die ärmeren Nachbarstaaten der EU und Europas eröffnen.
Resumo:
The principal objective of this paper is to develop a methodology for the formulation of a master plan for renewable energy based electricity generation in The Gambia, Africa. Such a master plan aims to develop and promote renewable sources of energy as an alternative to conventional forms of energy for generating electricity in the country. A tailor-made methodology for the preparation of a 20-year renewable energy master plan focussed on electricity generation is proposed in order to be followed and verified throughout the present dissertation, as it is applied for The Gambia. The main input data for the proposed master plan are (i) energy demand analysis and forecast over 20 years and (ii) resource assessment for different renewable energy alternatives including their related power supply options. The energy demand forecast is based on a mix between Top-Down and Bottom-Up methodologies. The results are important data for future requirements of (primary) energy sources. The electricity forecast is separated in projections at sent-out level and at end-user level. On the supply side, Solar, Wind and Biomass, as sources of energy, are investigated in terms of technical potential and economic benefits for The Gambia. Other criteria i.e. environmental and social are not considered in the evaluation. Diverse supply options are proposed and technically designed based on the assessed renewable energy potential. This process includes the evaluation of the different available conversion technologies and finalizes with the dimensioning of power supply solutions, taking into consideration technologies which are applicable and appropriate under the special conditions of The Gambia. The balance of these two input data (demand and supply) gives a quantitative indication of the substitution potential of renewable energy generation alternatives in primarily fossil-fuel-based electricity generation systems, as well as fuel savings due to the deployment of renewable resources. Afterwards, the identified renewable energy supply options are ranked according to the outcomes of an economic analysis. Based on this ranking, and other considerations, a 20-year investment plan, broken down into five-year investment periods, is prepared and consists of individual renewable energy projects for electricity generation. These projects included basically on-grid renewable energy applications. Finally, a priority project from the master plan portfolio is selected for further deeper analysis. Since solar PV is the most relevant proposed technology, a PV power plant integrated to the fossil-fuel powered main electrical system in The Gambia is considered as priority project. This project is analysed by economic competitiveness under the current conditions in addition to sensitivity analysis with regard to oil and new-technology market conditions in the future.
Resumo:
In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.