6 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
Die Maßnahmen zur Förderung der Windenergie in Deutschland haben wichtige Anstöße zur technologischen Weiterentwicklung geliefert und die Grundlagen für den enormen Anlagenzubau geschaffen. Die installierte Windleistung hat heute eine beachtliche Größenordnung erreicht und ein weiteres Wachstum in ähnlichen Dimensionen ist auch für die nächsten Jahre zu erwarten. Die aus Wind erzeugte elektrische Leistung deckt bereits heute in einigen Netzbereichen die Netzlast zu Schwachlastzeiten. Dies zeigt, dass die Windenergie ein nicht mehr zu vernachlässigender Faktor in der elektrischen Energieversorgung geworden ist. Im Rahmen der Kraftwerkseinsatzplanung sind Betrag und Verlauf der Windleistung des folgenden Tages mittlerweile zu wichtigen und zugleich schwierig zu bestimmenden Variablen geworden. Starke Schwankungen und falsche Prognosen der Windstromeinspeisung verursachen zusätzlichen Bedarf an Regel- und Ausgleichsleistung durch die Systemführung. Das im Rahmen dieser Arbeit entwickelte Prognosemodell liefert die zu erwartenden Windleistungen an 16 repräsentativen Windparks bzw. Gruppen von Windparks für bis zu 48 Stunden im Voraus. Aufgrund von prognostizierten Wetterdaten des deutschen Wetterdienstes (DWD) werden die Leistungen der einzelnen Windparks mit Hilfe von künstlichen neuronalen Netzen (KNN) berechnet. Diese Methode hat gegenüber physikalischen Verfahren den Vorteil, dass der komplexe Zusammenhang zwischen Wettergeschehen und Windparkleistung nicht aufwendig analysiert und detailliert mathematisch beschrieben werden muss, sondern anhand von Daten aus der Vergangenheit von den KNN gelernt wird. Das Prognosemodell besteht aus zwei Modulen. Mit dem ersten wird, basierend auf den meteorologischen Vorhersagen des DWD, eine Prognose für den Folgetag erstellt. Das zweite Modul bezieht die online gemessenen Leistungsdaten der repräsentativen Windparks mit ein, um die ursprüngliche Folgetagsprognose zu verbessern und eine sehr genaue Kurzzeitprognose für die nächsten drei bis sechs Stunden zu berechnen. Mit den Ergebnissen der Prognosemodule für die repräsentativen Standorte wird dann über ein Transformationsmodell, dem so genannten Online-Modell, die Gesamteinspeisung in einem größeren Gebiet berechnet. Das Prognoseverfahren hat seine besonderen Vorzüge in der Genauigkeit, den geringen Rechenzeiten und den niedrigen Betriebskosten, da durch die Verwendung des bereits implementierten Online-Modells nur eine geringe Anzahl von Vorhersage- und Messstandorten benötigt wird. Das hier vorgestellte Prognosemodell wurde ursprünglich für die E.ON-Netz GmbH entwickelt und optimiert und ist dort seit Juli 2001 im Einsatz. Es lässt sich jedoch auch leicht an andere Gebiete anpassen. Benötigt werden dazu nur die Messdaten der Leistung ausgewählter repräsentativer Windparks sowie die dazu gehörenden Wettervorhersagen, um die KNN entsprechend zu trainieren.
Resumo:
Sowohl die Ressourcenproblematik als auch die drohenden Ausmaße der Klimaänderung lassen einen Umstieg auf andere Energiequellen langfristig unausweichlich erscheinen und mittelfristig als dringend geboten. Unabhängig von der Frage, auf welchem Niveau sich der Energiebedarf stabilisieren lässt, bleibt dabei zu klären, welche Möglichkeiten sich aus technischer und wirtschaftlicher Sicht in Zukunft zur Deckung unseres Energiebedarfs anbieten. Eine aussichtsreiche Option besteht in der Nutzung regenerativer Energien in ihrer ganzen Vielfalt. Die Arbeit "Szenarien zur zukünftigen Stromversorgung, kostenoptimierte Variationen zur Versorgung Europas und seiner Nachbarn mit Strom aus erneuerbaren Energien" konzentriert sich mit der Stromversorgung auf einen Teilaspekt der Energieversorgung, der zunehmend an Wichtigkeit gewinnt und als ein Schlüssel zur nachhaltigen Energieversorgung interpretiert werden kann. Die Stromversorgung ist heute weltweit für etwa die Hälfte des anthropogenen CO2-Ausstoßes verantwortlich. In dieser Arbeit wurden anhand verschiedener Szenarien Möglichkeiten einer weitgehend CO2–neutralen Stromversorgung für Europa und seine nähere Umgebung untersucht, wobei das Szenariogebiet etwa 1,1 Mrd. Einwohner und einen Stromverbrauch von knapp 4000 TWh/a umfasst. Dabei wurde untersucht, wie die Stromversorgung aufgebaut sein sollte, damit sie möglichst kostengünstig verwirklicht werden kann. Diese Frage wurde beispielsweise für Szenarien untersucht, in denen ausschließlich heute marktverfügbare Techniken berücksichtigt wurden. Auch der Einfluss der Nutzung einiger neuer Technologien, die bisher noch in Entwicklung sind, auf die optimale Gestaltung der Stromversorgung, wurde anhand einiger Beispiele untersucht. Die Konzeption der zukünftigen Stromversorgung sollte dabei nach Möglichkeit objektiven Kriterien gehorchen, die auch die Vergleichbarkeit verschiedener Versorgungsansätze gewährleisten. Dafür wurde ein Optimierungsansatz gewählt, mit dessen Hilfe sowohl bei der Konfiguration als auch beim rechnerischen Betrieb des Stromversorgungssystems weitgehend auf subjektive Entscheidungsprozesse verzichtet werden kann. Die Optimierung hatte zum Ziel, für die definierte möglichst realitätsnahe Versorgungsaufgabe den idealen Kraftwerks- und Leitungspark zu bestimmen, der eine kostenoptimale Stromversorgung gewährleistet. Als Erzeugungsoptionen werden dabei u.a. die Nutzung Regenerativer Energien durch Wasserkraftwerke, Windenergiekonverter, Fallwindkraftwerke, Biomassekraftwerke sowie solare und geothermische Kraftwerke berücksichtigt. Abhängig von den gewählten Randbedingungen ergaben sich dabei unterschiedliche Szenarien. Das Ziel der Arbeit war, mit Hilfe unterschiedlicher Szenarien eine breite Basis als Entscheidungsgrundlage für zukünftige politische Weichenstellungen zu schaffen. Die Szenarien zeigen Optionen für eine zukünftige Gestaltung der Stromversorgung auf, machen Auswirkungen verschiedener – auch politischer – Rahmenbedingungen deutlich und stellen so die geforderte Entscheidungsgrundlage bereit. Als Grundlage für die Erstellung der Szenarien mussten die verschiedenen Potentiale erneuerbarer Energien in hoher zeitlicher und räumlicher Auflösung ermittelt werden, mit denen es erstmals möglich war, die Fragen einer großräumigen regenerativen Stromversorgung ohne ungesicherte Annahmen anhand einer verlässlichen Datengrundlage anzugehen. Auch die Charakteristika der verschiedensten Energiewandlungs- und Transportsysteme mussten studiert werden und sind wie deren Kosten und die verschiedenen Potentiale in der vorliegenden Arbeit ausführlich diskutiert. Als Ausgangsszenario und Bezugspunkt dient ein konservatives Grundszenario. Hierbei handelt es sich um ein Szenario für eine Stromversorgung unter ausschließlicher Nutzung erneuerbarer Energien, die wiederum ausschließlich auf heute bereits entwickelte Technologien zurückgreift und dabei für alle Komponenten die heutigen Kosten zugrundelegt. Dieses Grundszenario ist dementsprechend auch als eine Art konservative Worst-Case-Abschätzung für unsere Zukunftsoptionen bei der regenerativen Stromversorgung zu verstehen. Als Ergebnis der Optimierung basiert die Stromversorgung beim Grundszenario zum größten Teil auf der Stromproduktion aus Windkraft. Biomasse und schon heute bestehende Wasserkraft übernehmen den überwiegenden Teil der Backup-Aufgaben innerhalb des – mit leistungsstarker HGÜ (Hochspannungs–Gleichstrom–Übertragung) verknüpften – Stromversorgungsgebiets. Die Stromgestehungskosten liegen mit 4,65 €ct / kWh sehr nahe am heute Üblichen. Sie liegen niedriger als die heutigen Preisen an der Strombörse. In allen Szenarien – außer relativ teuren, restriktiv ”dezentralen” unter Ausschluss großräumig länderübergreifenden Stromtransports – spielt der Stromtransport eine wichtige Rolle. Er wird genutzt, um Ausgleichseffekte bei der dargebotsabhängigen Stromproduktion aus erneuerbaren Quellen zu realisieren, gute kostengünstige Potentiale nutzbar zu machen und um die Speicherwasserkraft sowie die dezentral genutzte Biomasse mit ihrer Speicherfähigkeit für großräumige Backup-Aufgaben zu erschließen. Damit erweist sich der Stromtransport als einer der Schlüssel zu einer kostengünstigen Stromversorgung. Dies wiederum kann als Handlungsempfehlung bei politischen Weichenstellungen interpretiert werden, die demnach gezielt auf internationale Kooperation im Bereich der Nutzung erneuerbarer Energien setzen und insbesondere den großräumigen Stromtransport mit einbeziehen sollten. Die Szenarien stellen detaillierte und verlässliche Grundlagen für wichtige politische und technologische Zukunftsentscheidungen zur Verfügung. Sie zeigen, dass bei internationaler Kooperation selbst bei konservativen Annahmen eine rein regenerative Stromversorgung möglich ist, die wirtschaftlich ohne Probleme zu realisieren wäre und verweisen den Handlungsbedarf in den Bereich der Politik. Eine wesentliche Aufgabe der Politik läge darin, die internationale Kooperation zu organisieren und Instrumente für eine Umgestaltung der Stromversorgung zu entwickeln. Dabei kann davon ausgegangen werden, dass nicht nur ein sinnvoller Weg zu einer CO2–neutralen Stromversorgung beschritten würde, sondern sich darüber hinaus ausgezeichnete Entwicklungsperspektiven für die ärmeren Nachbarstaaten der EU und Europas eröffnen.
Resumo:
In rural areas of the Mekong Countries, the problem of electricity supplying rural communities is particularly alarming. Supplying power to these areas requires facilities that are not economically viable. However, government programs are under way to provide this product that is vital to community well being. A nation priority of Mekong Countries is to provide electrical power to people in rural areas, within normal budgetary constraints. Electricity must be introduced into rural areas in such a way that maximize the technical, economic and social benefit. Another consideration is the source of electrical generation and the effects on the natural environment. The main research purpose is to implement field tests, monitoring and evaluation of the PV-Diesel Hybrid System (PVHS) at the Energy Park of School of Renewable Energy Technology (SERT) in order to test the PVSH working under the meteorological conditions of the Mekong Countries and to develop a software simulation called RES, which studies the technical and economic performance of rural electrification options. This software must be easy to use and understand for the energy planner on rural electrification projects, to evaluate the technical and economic performance of the PVHS based on the renewable energy potential for rural electrification of the Mekong Country by using RES. Finally, this project aims to give guidance for the possible use of PVHS application in this region, particularly in regard to its technical and economic sustainability. PVHS should be promoted according to the principles of proper design and adequate follow up with maintenance, so that the number of satisfied users will be achieved. PVHS is not the only possible technology for rural electrification, but for the Mekong Countries it is one of the most proper choices. Other renewable energy options such as wind, biomass and hydro power need to be studied in future.
Resumo:
Die wachsende Weltbevölkerung bedingt einen höheren Energiebedarf, dies jedoch unter der Beachtung der nachhaltigen Entwicklung. Die derzeitige zentrale Versorgung mit elektrischer Energie wird durch wenige Erzeugungsanlagen auf der Basis von fossilen Primärenergieträgern und Kernenergie bestimmt, die die räumlich verteilten Verbraucher zuverlässig und wirtschaftlich über ein strukturiertes Versorgungssystem beliefert. In den Elektrizitätsversorgungsnetzen sind keine nennenswerten Speicherkapazitäten vorhanden, deshalb muss die von den Verbrauchern angeforderte Energie resp. Leistung jederzeit von den Kraftwerken gedeckt werden. Bedingt durch die Liberalisierung der Energiemärkte und die geforderte Verringerung der Energieabhängigkeit Luxemburgs, unterliegt die Versorgung einem Wandel hin zu mehr Energieeffizienz und erhöhter Nutzung der dargebotsabhängigen Energiequellen. Die Speicherung der aus der Windkraft erzeugten elektrischen Energie, wird in den Hochleistungs-Bleiakkumulatoren, errichtet im ländlichen Raum in der Nähe der Windkraftwerke, eingespeichert. Die zeitversetzte Einspeisung dieser gespeicherten elektrischen Energie in Form von veredelter elektrischer Leistung während den Lastspitzen in das 20 kV-Versorgungsnetz der CEGEDEL stellt die Innovation in der luxemburgischen Elektrizitätsversorgung dar. Die Betrachtungen beschränken sich somit auf die regionale, relativ kleinräumige Einbindung der Windkraft in die elektrische Energieversorgung des Großherzogtums Luxemburg. Die Integration der Windkraft im Regionalbereich wird in den Vordergrund der Untersuchung gerückt. Überregionale Ausgleichseffekte durch Hochspannungsleitungen der 230/400 kV-Systeme werden außer Acht gelassen. Durch die verbrauchernahe Bereitstellung von elektrischer Spitzenleistung vermindern sich ebenfalls die Übertragungskosten aus den entfernten Spitzenlastkraftwerken, der Ausbau von Kraftwerkskapazitäten kann in die Zukunft verschoben werden. Die Emission von Treibhausgasen in thermischen Kraftwerken wird zum Teil reduziert. Die Berechnungen der Wirtschaftlichkeit von Hybridanlagen, zusammengesetzt aus den Windkraftwerken und den Hochleistungs-Bleiakkumulatoren bringen weitere Informationen zum Einsatz dieser dezentralen Speichern, als Partner der nachhaltigen Energieversorgung im ländlichen Raum. Die untersuchte Einspeisung von erneuerbarer Spitzenleistung lässt sich auch in die Entwicklungsländer übertragen, welche nicht über zentrale Kraftwerkskapazitäten und Verteilungsnetze verfügen.