4 resultados para Engineer

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a new method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ontologies have been established for knowledge sharing and are widely used as a means for conceptually structuring domains of interest. With the growing usage of ontologies, the problem of overlapping knowledge in a common domain becomes critical. In this short paper, we address two methods for merging ontologies based on Formal Concept Analysis: FCA-Merge and ONTEX. --- FCA-Merge is a method for merging ontologies following a bottom-up approach which offers a structural description of the merging process. The method is guided by application-specific instances of the given source ontologies. We apply techniques from natural language processing and formal concept analysis to derive a lattice of concepts as a structural result of FCA-Merge. The generated result is then explored and transformed into the merged ontology with human interaction. --- ONTEX is a method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down- knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.