8 resultados para Eigenvalue of a graph

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aims of this thesis were to determine the animal health status in organic dairy farms in Europe and to identify drivers for improving the current situation by means of a systemic approach. Prevalences of production diseases were determined in 192 herds in Germany, France, Spain, and Sweden (Paper I), and stakeholder consultations were performed to investigate potential drivers to improve animal health on the sector level (ibid.). Interactions between farm variables were assessed through impact analysis and evaluated to identify general system behaviour and classify components according to their outgoing and incoming impacts (Paper II-III). The mean values and variances of prevalences indicate that the common rules of organic dairy farming in Europe do not result in consistently low levels of production diseases. Stakeholders deemed it necessary to improve the current status and were generally in favour of establishing thresholds for the prevalence of production diseases in organic dairy herds as well as taking actions to improve farms below that threshold. In order to close the gap between the organic principle of health and the organic farming practice, there is the need to formulate a common objective of good animal health and to install instruments to ensure and prove that the aim is followed by all dairy farmers in Europe who sell their products under the organic label. Regular monitoring and evaluation of herd health performance based on reference values are considered preconditions for identifying farms not reaching the target and thus in need of improvement. Graph-based impact analysis was shown to be a suitable method for modeling and evaluating the manifold interactions between farm factors and for identifying the most influential components on the farm level taking into account direct and indirect impacts as well as impact strengths. Variables likely to affect the system as a whole, and the prevalence of production diseases in particular, varied largely between farms despite some general tendencies. This finding reflects the diversity of farm systems and underlines the importance of applying systemic approaches in health management. Reducing the complexity of farm systems and indicating farm-specific drivers, i.e. areas in a farm, where changes will have a large impact, the presented approach has the potential to complement and enrich current advisory practice and to support farmers’ decision-making in terms of animal health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recurrent iterated function system (RIFS) is a genaralization of an IFS and provides nonself-affine fractal sets which are closer to natural objects. In general, it's attractor is not a continuous surface in R3. A recurrent fractal interpolation surface (RFIS) is an attractor of RIFS which is a graph of bivariate continuous interpolation function. We introduce a general method of generating recurrent interpolation surface which are at- tractors of RIFSs about any data set on a grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, beside consistency checking, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as (labeled, directed) graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures in general currently receive high attention in the Semantic Web community, there are only very few SNA applications up to now, and virtually none for analyzing the structure of ontologies. We illustrate in this paper the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality based on Hermitian matrices, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesh generation is an important step inmany numerical methods.We present the “HierarchicalGraphMeshing” (HGM)method as a novel approach to mesh generation, based on algebraic graph theory.The HGM method can be used to systematically construct configurations exhibiting multiple hierarchies and complex symmetry characteristics. The hierarchical description of structures provided by the HGM method can be exploited to increase the efficiency of multiscale and multigrid methods. In this paper, the HGMmethod is employed for the systematic construction of super carbon nanotubes of arbitrary order, which present a pertinent example of structurally and geometrically complex, yet highly regular, structures. The HGMalgorithm is computationally efficient and exhibits good scaling characteristics. In particular, it scales linearly for super carbon nanotube structures and is working much faster than geometry-based methods employing neighborhood search algorithms. Its modular character makes it conducive to automatization. For the generation of a mesh, the information about the geometry of the structure in a given configuration is added in a way that relates geometric symmetries to structural symmetries. The intrinsically hierarchic description of the resulting mesh greatly reduces the effort of determining mesh hierarchies for multigrid and multiscale applications and helps to exploit symmetry-related methods in the mechanical analysis of complex structures.