3 resultados para Effects-Based Approach to Operations
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The right to food has become a pillar of international humanitarian and human rights law. The increasing number of food-related emergencies and the evolution of the international order brought the more precise notion of food security and made a potential right to receive food aid emerge. Despite this apparent centrality, recent statistics show that a life free from hunger is for many people all over the world still a utopian idea. The paper will explore nature and content of the right to food, food security and food aid under international law in order to understand the reasons behind the substantial failure of this right-centred approach, emphasising the lack of legal effects of many food-related provisions because of excessive moral connotations of the right to be free from hunger. Bearing in mind the three-dimensional nature of food security, the paper will also suggest that all attention has been focused on the availability of food, while real difficulties arise in terms of accessibility and adequacy. Emergency situations provide an excellent example of this unbalance, as the emerging right to receive food aid focus itself on the availability of food, without improving local production and adequacy. Looking at other evolving sectors of international law, such as the protection of the environment, and particularly the safeguard of biological diversity, alternative solutions will be envisaged in order to “feed” the right to food.
Resumo:
In Germany the upscaling algorithm is currently the standard approach for evaluating the PV power produced in a region. This method involves spatially interpolating the normalized power of a set of reference PV plants to estimate the power production by another set of unknown plants. As little information on the performances of this method could be found in the literature, the first goal of this thesis is to conduct an analysis of the uncertainty associated to this method. It was found that this method can lead to large errors when the set of reference plants has different characteristics or weather conditions than the set of unknown plants and when the set of reference plants is small. Based on these preliminary findings, an alternative method is proposed for calculating the aggregate power production of a set of PV plants. A probabilistic approach has been chosen by which a power production is calculated at each PV plant from corresponding weather data. The probabilistic approach consists of evaluating the power for each frequently occurring value of the parameters and estimating the most probable value by averaging these power values weighted by their frequency of occurrence. Most frequent parameter sets (e.g. module azimuth and tilt angle) and their frequency of occurrence have been assessed on the basis of a statistical analysis of parameters of approx. 35 000 PV plants. It has been found that the plant parameters are statistically dependent on the size and location of the PV plants. Accordingly, separate statistical values have been assessed for 14 classes of nominal capacity and 95 regions in Germany (two-digit zip-code areas). The performances of the upscaling and probabilistic approaches have been compared on the basis of 15 min power measurements from 715 PV plants provided by the German distribution system operator LEW Verteilnetz. It was found that the error of the probabilistic method is smaller than that of the upscaling method when the number of reference plants is sufficiently large (>100 reference plants in the case study considered in this chapter). When the number of reference plants is limited (<50 reference plants for the considered case study), it was found that the proposed approach provides a noticeable gain in accuracy with respect to the upscaling method.
Resumo:
We use a microscopic theory to describe the dynamics of the valence electrons in divalent-metal clusters. The theory is based on a many-body model Harniltonian H which takes into account, on the same electronic level, the van der Waals and the covalent bonding. In order to study the ground-state properties of H we have developed an extended slave-boson method. We have studied the bonding character and the degree of electronic delocalization in Hg_n clusters as a function of cluster size. Results show that, for increasing cluster size, an abrupt change occurs in the bond character from van der Waals to covalent bonding at a critical cluster size n_c ~ 10-20. This change also involves a transition from localized to delocalized valence electrons, as a consequence of the competition between both bonding mechanisms.