163 resultados para Education - Data processing
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Despite its young history, Computer Science Education has seen a number of "revolutions". Being a veteran in the field, the author reflects on the many changes he has seen in computing and its teaching. The intent of this personal collection is to point out that most revolutions came unforeseen and that many of the new learning initiatives, despite high financial input, ultimately failed. The author then considers the current revolution (MOOC, inverted lectures, peer instruction, game design) and, based on the lessons learned earlier, argues why video recording is so successful. Given the fact that this is the decade we lost print (papers, printed books, book shops, libraries), the author then conjectures that the impact of the Internet will make this revolution different from previous ones in that most of the changes are irreversible. As a consequence he warns against storming ahead blindly and suggests to conserve - while it is still possible - valuable components of what might soon be called the antebellum age of education.
Resumo:
Analysis by reduction is a linguistically motivated method for checking correctness of a sentence. It can be modelled by restarting automata. In this paper we propose a method for learning restarting automata which are strictly locally testable (SLT-R-automata). The method is based on the concept of identification in the limit from positive examples only. Also we characterize the class of languages accepted by SLT-R-automata with respect to the Chomsky hierarchy.
Resumo:
Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.
Resumo:
Objektorientierte Modellierung (OOM) im Unterricht ist immer noch ein breit diskutiertes Thema - in der Didaktik akzeptiert und gewünscht, von der Praxis oft als unnötiger Overhead oder als schlicht zu komplex empfunden. Ich werde in dieser Arbeit zeigen, wie ein Unterrichtskonzept aufgebaut sein kann, das die lerntheoretischen Vorteile der OOM nutzt und dabei die berichteten Schwierigkeiten größtenteils vermeidet. Ausgehend von den in der Literatur dokumentierten Konzepten zur OOM und ihren Kritikpunkten habe ich ein Unterrichtskonzept entwickelt, das aus Erkenntnissen der Lernpsychologie, allgemeiner Didaktik, Fachdidaktik und auch der Softwaretechnik Unterrichtsmethoden herleitet, um den berichteten Schwierigkeiten wie z.B. dem "Lernen auf Vorrat" zu begegnen. Mein Konzept folgt vier Leitideen: models first, strictly objects first, Nachvollziehbarkeit und Ausführbarkeit. Die strikte Umsetzung dieser Ideen führte zu einem Unterrichtskonzept, das einerseits von Beginn an das Ziel der Modellierung berücksichtigt und oft von der dynamischen Sicht des Problems ausgeht. Da es weitgehend auf der grafischen Modellierungsebene verbleibt, werden viele Probleme eines Programmierkurses vermieden und dennoch entstehen als Ergebnis der Modellierung ausführbare Programme.
Resumo:
The process of developing software that takes advantage of multiple processors is commonly referred to as parallel programming. For various reasons, this process is much harder than the sequential case. For decades, parallel programming has been a problem for a small niche only: engineers working on parallelizing mostly numerical applications in High Performance Computing. This has changed with the advent of multi-core processors in mainstream computer architectures. Parallel programming in our days becomes a problem for a much larger group of developers. The main objective of this thesis was to find ways to make parallel programming easier for them. Different aims were identified in order to reach the objective: research the state of the art of parallel programming today, improve the education of software developers about the topic, and provide programmers with powerful abstractions to make their work easier. To reach these aims, several key steps were taken. To start with, a survey was conducted among parallel programmers to find out about the state of the art. More than 250 people participated, yielding results about the parallel programming systems and languages in use, as well as about common problems with these systems. Furthermore, a study was conducted in university classes on parallel programming. It resulted in a list of frequently made mistakes that were analyzed and used to create a programmers' checklist to avoid them in the future. For programmers' education, an online resource was setup to collect experiences and knowledge in the field of parallel programming - called the Parawiki. Another key step in this direction was the creation of the Thinking Parallel weblog, where more than 50.000 readers to date have read essays on the topic. For the third aim (powerful abstractions), it was decided to concentrate on one parallel programming system: OpenMP. Its ease of use and high level of abstraction were the most important reasons for this decision. Two different research directions were pursued. The first one resulted in a parallel library called AthenaMP. It contains so-called generic components, derived from design patterns for parallel programming. These include functionality to enhance the locks provided by OpenMP, to perform operations on large amounts of data (data-parallel programming), and to enable the implementation of irregular algorithms using task pools. AthenaMP itself serves a triple role: the components are well-documented and can be used directly in programs, it enables developers to study the source code and learn from it, and it is possible for compiler writers to use it as a testing ground for their OpenMP compilers. The second research direction was targeted at changing the OpenMP specification to make the system more powerful. The main contributions here were a proposal to enable thread-cancellation and a proposal to avoid busy waiting. Both were implemented in a research compiler, shown to be useful in example applications, and proposed to the OpenMP Language Committee.
Resumo:
A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).
Resumo:
While most data analysis and decision support tools use numerical aspects of the data, Conceptual Information Systems focus on their conceptual structure. This paper discusses how both approaches can be combined.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Topics in education are changing with an ever faster pace. E-Learning resources tend to be more and more decentralised. Users need increasingly to be able to use the resources of the web. For this, they should have tools for finding and organizing information in a decentral way. In this, paper, we show how an ontology-based tool suite allows to make the most of the resources available on the web.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.