2 resultados para Earthmoving machinery
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The soil amoebae Dictyostelium discoideum take up particles from their environment in order to obtain nutrition. The particle transits through the cell within a phagosome that fuses with organelles of different molecular compositions, undergoing a gradual degradation by different sets of hydrolytic enzymes. Griffiths’ concept of “phagosome individuality” predicts signaling from phagosomes into the cytoplasm, which might regulate many aspects of cell physiology. The finding that Dictyostelium cells depleted of the lysozyme AlyA or over-expressing the esterase Gp70 exhibit increased uptake of food particles, led to the postulation of a signaling cascade between endocytic compartments and the cytoskeletal uptake machinery at the plasma membrane. Assuming that Gp70 acts downstream of AlyA, gene-expression profiling of both mutants revealed different and overlapping sets of misregulated genes that might participate in this signaling cascade. Based on these results, we analyzed the effects of the artificial misregulation of six candidate genes by over-expression or negative genetic interference, in order to reconstruct at least part of the signaling pathway. SSB420 and SSL793 were chosen as candidates for the first signaling step, as they were up-regulated in AlyA-null cells and remained unaltered in the Gp70 over-expressing cells. The over-expression of SSB420 enhanced phagocytosis and raised the expression levels of Gp70, supporting its involvement in the signaling pathway between AlyA and Gp70 as a positive regulator of phagocytosis. However, this was not the case of cells over-expressing SSL793, as this mutation had no effects on phagocytosis. For the signaling downstream of Gp70, we studied four commonly misregulated genes in AlyA-depleted and Gp70 over-expressing cells. The expression levels of SLB350, SSB389 and TipD were lower in both mutants and therefore these were assumed as possible candidates for the negative regulation of phagocytosis. Cells depleted of SLB350 exhibited an increased phagocytic activity and no effect on Gp70 expression, proving its participation in the signaling pathway downstream of Gp70. Unlike SLB350, the disruption of the genes coding for SSB389 and TipD had no effects on particle uptake, excluding them from the pathway. The fourth candidate was Yipf1, the only gene that was commonly up-regulated in both mutants. Yet, the artificial over-expression of this protein had no effects on phagocytosis, so this candidate is also not included in the signaling pathway. Furthermore, localizing the products of the candidate genes within the cell helped unveiling several cellular organelles that receive signals from the phagosome and transduce them towards the uptake machinery.
Resumo:
The assembly of outer membranes of the cell wall of Gram-negative bacteria and of various organelles of eukaryotic cells requires the evolutionarily conserved β-barrel-assembly machinery (BAM) complex. This thesis describes the biochemical and biophysical properties of the periplasmic domain of the β-barrel assembly machinery protein A (PD-BamA) of the E. coli BAM complex, its effect on insertion and folding of the Outer membrane protein A (OmpA) into lipid bilayers and the identification of regions of PD-BamA that may be involved in protein-protein interactions. The secondary structure of PD-BamA in mixed lipid bilayers, analyzed by Circular dichroism (CD) spectroscopy, contained less β-sheet at an increased content of phosphatidylglycerol (PG) in the lipid membrane. This result showed membrane binding, albeit only in the presence of negatively charged lipids. Fluorescence spectroscopy demonstrated that PD-BamA only binds to lipid bilayers containing the negatively charged DOPG, confirming the results of CD spectroscopy. PD-BamA did not bind to zwitterionic but overall neutral lipid bilayers. PD-BamA bound to OmpA at a stoichiometry of 1:1. PD-BamA strongly facilitated insertion and folding of OmpA into lipid membranes. Kinetics of PD-BamA mediated folding of OmpA was well described by two parallel folding processes, a fast folding process and a slow folding process, differing by 2-3 orders of magnitude in their rate constants. The folding yields of OmpA depended on the concentration of lipid membranes and also on the lipid head groups. The presence of PD-BamA resulted in increased folding yields of OmpA in negatively charged DOPG, but PD-BamA did not affect the folding kinetics of OmpA into bilayers of zwitterionic but overall neutral lipids. The efficiency of folding and insertion of OmpA into lipid bilayers strongly depended on the ratio PD-BamA/OmpA and was optimal at equimolar concentrations of PD-BamA and OmpA. To examine complexes of unfolded OmpA with PD-BamA in more detail, site-directed spectroscopy was used to explore contact regions in both, PD-BamA and OmpA. Similarly, contact regions were also investigated for another protein complex formed by PD-BamA and the lipoprotein BamD. The obtained data suggest, that the site of interaction on PD-BamA for OmpA might be oriented towards the exterior environment away from the preceding POTRA domains, but that PD-BamA is oriented with its short α-helix α1 of POTRA domain 5 towards the C-terminal end of BamD.