7 resultados para Drosofila melanogaster - Resistência a inseticidas
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The collection of X chromosome insertions (PX) lethal lines, which was isolated from a screen for essential genes on the X chromosome, was characterized by means of cloning the insertion sites, mapping the sites within genomic DNA and determination of the associated reporter gene expresssion patterns. The established STS flanking the P element insertion sites were submitted to EMBL nucleotide databases and their in situ data together with the enhancer trap expression patterns have been deposited in the FlyView database. The characterized lines are now available to be used by the scientific community for a detailed analysis of the newly established lethal gene functions. One of the isolated genes on the X chromosome was the Drosophila gene Wnt5 (DWnt5). From two independent screens, one lethal and three homozygous viable alleles were recovered, allowing the identification of two distinct functions for DWnt5 in the fly. Observations on the developing nervous system of mutant embryos suggest that DWnt5 activity affects axon projection pattern. Elevated levels of DWNT5 activity in the midline cells of the central nervous system causes improper establishment and maintenance of the axonal pathways. Our analysis of the expression and mutant phenotype indicates that DWnt5 function in a process needed for proper organization of the nervous system. A second and novel function of DWnt5 is the control of the body size by regulation of the cell number rather than affecting the size of cells. Moreover, experimentally increased DWnt5 levels in a post-mitotic region of the eye imaginal disc causes abnormal cell cycle progression, resulting in additional ommatidia in the adult eye when compared to wild type. The increased cell number and the effects on the cell cycle after exposure to high DWNT5 levels is the result of a failure to downregulate cyclin B and therefore the unsuccessful establishment of a G1 arrest.
Resumo:
Cell-cell interactions during embryonic development are crucial in the co-ordination of growth, differentiation and maintenance of many different cell types. To achieve this co-ordination each cell must properly translate signals received from neighbouring cells, into spatially and temporally appropriate developmental responses. A surprisingly limited number of signal pathways are responsible for the differentiation of enormous variety of cell types. As a result, pathways are frequently 'reused' during development. Thus, in mammals the JAK/STAT pathway is required during early embryogenesis, mammary gland formation, hematopoiesis and, finally, plays a pivotal role in immune response. In the canonical way, the JAK/STAT pathway is represented by a transmembrane receptor associated with a Janus kinase (JAK), which upon stimulation by an extra-cellular ligand, phosphorylates itself, the receptor and, finally, the signal transducer and activator of transcription (STAT) molecules. Phosphorylated STATs dimerise and translocate to the nucleus where they activate transcription of target genes. The JAK/STAT pathway has been conserved throughout evolution, and all known components are present in the genome of Drosophila melanogaster. Besides hematopoietic and immunity functions, the pathway is also required during development for processes including embryonic segmentation, tracheal morphogenesis, posterior spiracle formation etc. This study describes Drosophila Ken&Barbie (Ken) as a selective regulator of JAK/STAT signalling. ken mutations identified in a screen for modulators of an eye overgrowth phenotype, caused by over-expression of the pathway ligand unpaired, also interact genetically with the pathway receptor domeless (dome) and the transcription factor stat92E. Over-expression of Ken can phenocopy developmental defects known to be caused by the loss of JAK/STAT signalling. These genetic interactions suggest that Ken may function as a negative regulator of the pathway. Ken has C-terminal Zn-finger domain, presumably for DNA binding, and N-terminal BTB/POZ domain, often found in transcriptional repressors. Using EGFP-fused construct expressed in vivo revealed nuclear accumulation of Ken. Therefore, it is proposed that Ken may act as a suppresser of STAT92E target genes. An in vitro assay, termed SELEX, determined that Ken specifically binds to a DNA sequence, with the essential for DNA recognition core overlapping that of STAT92E. This interesting observation suggests that not all STAT92E sites may also allow Ken binding. Strikingly, when effects of ectopic Ken on the expression of putative JAK/STAT pathway target genes were examined, only a subset of the genes tested, namely vvl, trh and kni, were down-regulated by Ken, whereas some others, such as eve and fj, appeared to be unresponsive. Further analysis of vvl, one of the genes susceptible to ectopic Ken, was undertaken. In the developing hindgut, expression of vvl is JAK/STAT pathway dependent, but remains repressed in the posterior spiracles, despite the stimulation of STAT92E by Upd in their primordia. Importantly, ken is also expressed in the developing posterior spiracles. Strikingly, up-regulation of vvl is observed in these tissues in ken mutant embryos. These imply that while ectopic Ken is sufficient to repress the expression of vvl in the hindgut, endogenous Ken is also necessary to prevent its activation in the posterior spiracles. It is therefore conceivable that ectopic vvl expression in the posterior spiracles of the ken mutants may be the result of de-repression of endogenous STAT92E activity. Another consequence of these observations is a fine balance that must exist between STAT92E and Ken activities. Apparently, endogenous level of Ken is sufficient to repress vvl, but not other, as yet unidentified, JAK/STAT pathway targets, whose presumable activation by STAT92E is required for posterior spiracle development as the embryos mutant for dome, the receptor of the pathway, show severe spiracle defects. These defects are also observed in the embryos mis-expressing Ken. Though it is possible that the posterior spiracle phenotype caused by higher levels of Ken results from a JAK/STAT pathway independent activity, it seems to be more likely that Ken acts in a dosage dependent manner, and extra Ken is able to further antagonise JAK/STAT pathway target genes. While STAT92E binding sites required for target gene expression have been poorly characterised, the existence of genome data allows the prediction of candidate STAT92E sites present in target genes promoters to be attempted. When a 6kb region containing the putative regulatory domains flanking the vvl locus are examined, only a single potential STAT92E binding site located 825bp upstream of the translational start can be detected. Strikingly, this site also includes a perfect Ken binding sequence. Such an in silico observation, though consistent with both Ken DNA binding assay in vitro and regulation of STAT92E target genes in vivo, however, requires further analysis. The JAK/STAT pathway is implicated in a variety of processes during embryonic and larval development as well as in imago. In each case, stimulation of the same transcription factor results in different developmental outcomes. While many potential mechanisms have been proposed and demonstrated to explain such pleiotropy, the present study indicates that Ken may represent another mechanism, with which signal transduction pathways are controlled. Ken selectively down-regulates a subset of potential target genes and so modifies the transcriptional profile generated by activated STAT92E - a mechanism, which may be partially responsible for differences in the morphogenetic processes elicited by JAK/STAT signalling during development.
Resumo:
Control of protein synthesis is a key step in the regulation of gene expression during apoptosis and the heat shock response. Under such conditions, cap-dependent translation is impaired and Internal Ribosome Entry Site (IRES)-dependent translation plays a major role in mammalian cells. Although the role of IRES-dependent translation during apoptosis has been mainly studied in mammals, its role in the translation of Drosophila apoptotic genes has not been yet studied. The observation that the Drosophila mutant embryos for the cap-binding protein, the eukaryotic initiation factor eIF4E, exhibits increased apoptosis in correlation with up-regulated proapoptotic gene reaper (rpr) transcription constitutes the first evidence for the existence of a cap-independent mechanism for the translation of Drosophila proapoptotic genes. The mechanism of translation of rpr and other proapoptotic genes was investigated in this work. We found that the 5 UTR of rpr mRNA drives translation in an IRES-dependent manner. It promotes the translation of reporter RNAs in vitro either in the absence of cap, in the presence of cap competitors, or in extracts derived from heat shocked and eIF4E mutant embryos and in vivo in cells transfected with reporters bearing a non functional cap structure, indicating that cap recognition is not required in rpr mRNA for translation. We also show that rpr mRNA 5 UTR exhibits a high degree of similarity with that of Drosophila heat shock protein 70 mRNA (hsp70), an antagonist of apoptosis, and that both are able to conduct IRES-mediated translation. The proapoptotic genes head involution defective (hid) and grim, but not sickle, also display IRES activity. Studies of mRNA association to polysomes in embryos indicate that both rpr, hsp70, hid and grim endogenous mRNAs are recruited to polysomes in embryos in which apoptosis or thermal stress was induced. We conclude that hsp70 and, on the other hand, rpr, hid and grim which are antagonizing factors during apoptosis, use a similar mechanism for protein synthesis. The outcome for the cell would thus depend on which protein is translated under a given stress condition. Factors involved in the differential translation driven by these IRES could play an important role. For this purpose, we undertook the identification of the ribonucleoprotein (RNP) complexes assembled onto the 5 UTR of rpr mRNA. We established a tobramycin-affinity-selection protocol that allows the purification of specific RNP that can be further analyzed by mass spectrometry. Several RNA binding proteins were identified as part of the rpr 5 UTR RNP complex, some of which have been related to IRES activity. The involvement of one of them, the La antigen, in the translation of rpr mRNA, was established by RNA-crosslinking experiments using recombinant protein and rpr 5 UTR and by the analysis of the translation efficiency of reporter mRNAs in Drosophila cells after knock down of the endogenous La by RNAi experiments. Several uncharacterized proteins were also identified, suggesting that they might play a role during translation, during the assembly of the translational machinery or in the priming of the mRNA before ribosome recognition. Our data provide evidence for the involvement of La antigen in the translation of rpr mRNA and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts. To further understand the mechanisms of translation initiation in Drosophila, we analyzed the role of eIF4B on cap-dependent and cap-independent translation. We showed that eIF4B is mostly involved in cap-, but not IRES-dependent translation as it happens in mammals.
Resumo:
Das Protein Orb2, welches zum Xenopus CPEB homolog ist, erfüllt während der Spermatogenese von Drosophila melanogaster eine wesentliche Funktion. Das teilweise Ausschalten von orb2 führt zu Störungen in der Individualisierung der Spermatiden, Veränderung in der Morphologie und Lokalisation der Spermatidenkerne und damit verbunden zu männlicher Sterilität. Der weit gestreute Phänotyp spricht für eine regulatorische Funktion des Proteins, wie es aufgrund der Homologie zu CPEB zu erwarten ist. Orb2 mutante Weibchen zeigen dagegen keinen Phänotyp. Die Sterilität konnte mit spezifischen Rettungskonstrukten rückgängig gemacht werden, wobei die beiden Proteinformen in ihrer Funktion höchstwahrscheinlich äquivalent sind, da eine größere Menge an kleinem Protein das Fehlen des größeren ausgleichen kann. Beide Proteinformen lokalisieren in fast alle Stadien der Spermatogenese, wobei nur das kleinere auch in reifen Spermien persistiert. Zur Untersuchung der regulatorischen Funktion des Proteins Orb2 wurden zunächst drei mögliche Protein-Interaktionskandidaten analysiert. Obwohl ähnliche mutante Phänotypen in Gap und Cup ausgelöst wurden, lässt sich eine Interaktion bis jetzt mit diesen Kandidaten weder ausschließen noch bestätigen. Daneben zeigte das Protein Tob eine ähnliche Lokalisierung und einen deutlich ähnlicheren mutanten Phänotyp, wie er für Orb2 beschrieben wurde. Besonders auffällig ist die Lokalisation der Tob mRNA an die Spermatidenenden und die Verringerung der Transkriptmenge in der orb2-Mutante. Ob dieser Phänotyp durch den Verlust der regulatorischen Funktion von Orb2 hervorgerufen wird oder durch den späten Zeitpunkt der Transkription bedingt ist, muß in späteren Experimenten geklärt werden. Mit Hilfe eines Co-Immunpräzipitations-Experimentes wurde nach weiteren Proteininteraktionspartnern sowie nach Ziel-mRNAs gesucht, die durch Orb2 reguliert werden könnten. Dabei ergaben die massenspektrometrischen Analysen zwar Proteine, die mit der Translation selbst in Zusammenhang stehen, sowie einige regulatorische RNA-bindende Proteine, wiesen aber auch in Gestalt eines häufig nachgewiesenen Anhangsdrüsenproteins auf deutliche systematische Probleme hin. Auf genetischem Wege war bereits der Nachweis gelungen, dass die Protamine und mst77F, die strukturelle Komponenten der kompaktierten Kern-DNA sind, durch Orb2 in ihrer Translation reprimiert werden. Dieses Ergebnis wurde zum Teil bestätigt durch den Nachweis der Protamin mRNAs in den Eluaten aus dem Co-Immunpräzipitationsexperiment. Damit konnte zum ersten Mal in der Drosophila Spermatogenese das regulatorische Protein zu einer translationskontrollierten mRNA identifiziert werden.
Resumo:
Dem Farinelli-Protein wird eine Funktion als hodenspezifisches VAP-Protein zugesprochen (Renner, 2001). Mit Hilfe des ER-Markers PDI konnte Fan eindeutig dem ER zugeordnet werden. Fan stellt dabei ein integrales Membranprotein dar, welches nur durch Detergenz- Behandlung in Lösung zu bringen war. Durch den Einsatz zweier Fragment-Konstrukte (fan∆MSP-GFP und fanMSP-GFP) von Fan wurde die Relevanz der MSP-Domäne für die männliche Fertilität dokumentiert. Das Fusionsprotein Fan∆MSP-GFP lag aufgrund der verbliebenen Transmembrandomäne weiterhin im ER vor. Dennoch konnte der sterile Phänotyp der fanJo-Männchen, die keinerlei Fan-Protein enthalten, durch das Einbringen des Fusionskonstrukts nicht gerettet werden. MSP-GFP für sich allein konnte keine Verbindung mit dem ER eingehen und zeigte eine diffuse Fluoreszenz. Im Rahmen der Dissertation wurden mehrere, durch das yeast two hybrid-System ermittelte, mögliche Interaktionspartner von Fan analysiert. Das Protein CG5194 konnte als einziges wie Fan dem ER zugeordnet werden. Seine Expression beschränkte sich aber auf die Spermatocytenphase und ist somit kürzer als die von Farinelli. Nach Einkreuzen der GFP-Fusionskonstrukte in die fan-Nullmutante konnte CG5194 nicht mehr am ER der Spermatocyten beobachtet werden, sondern lag innerhalb des Cytoplasmas diffus verteilt vor. Auch bei der Western Blot-Analyse konnte das Protein von CG5194 nur noch in der Überstand-Fraktion mit den ungebundenen Proteinen nachgewiesen werden. Lag in der fan-Nullmutante ausschließlich das Fan∆MSP-GFP-Fusionsprotein vor, konnte die ER-Lokalisation von CG5194 ebenfalls nicht beibehalten werden. Mit Hilfe einer Fragment-Analyse konnte gezeigt werden, dass in den männlichen Gonaden das erste Exon von CG5194 für die Interaktion mit Fan entscheidend ist. Innerhalb der Ovarien dagegen ist das zweite Exon für die Lokalisation im ER notwendig. Demzufolge ist neben einem anderen Interaktionspartner als Fan auch eine andere Domäne im Protein für die ER-Lokalisation in der weiblichen Keimbahn entscheidend. Durch den Einsatz von antisense- und RNAi-Konstrukten konnte ein steriler Phänotyp bei den Männchen erzeugt werden. Überraschenderweise zeigten die Tiere erst einen Defekt während der Spermatiden-Differenzierung. Bereits während der Diplomarbeit wurde 98A im Kopfbereich der elongierten Spermatiden nachgewiesen. Mittels einer DNA-Färbung sowie durch die Colokalisation mit dem Akrosom-Protein Sneaky wurde 98A dem Bereich des Akrosoms zugeordnet. Sneaky taucht jedoch bereits früher als 98A in den Keimzellen auf. Die Erzeugung eines sterilen Phänotyps durch den Einfluss eines RNAi-Konstrukts gelang nicht. Entweder ist 98A für die Fertilität von Drosophila nicht relevant oder aber seine Funktion kann von anderen Proteinen übernommen werden.
Resumo:
Temporal changes in odor concentration are vitally important to many animals orienting and navigating in their environment. How are such temporal changes detected? Within the scope of the present work an accurate stimulation and analysis system was developed to examine the dynamics of physiological properties of Drosophila melanogaster olfactory receptor organs. Subsequently a new method for delivering odor stimuli was tested and used to present the first dynamic characterization of olfactory receptors at the level of single neurons. Initially, recordings of the whole antenna were conducted while stimulating with different odors. The odor delivery system allowed the dynamic characterization of the whole fly antenna, including its sensilla and receptor neurons. Based on the obtained electroantennogram data a new odor delivery method called digital sequence method was developed. In addition the degree of accuracy was enhanced, initially using electroantennograms, and later recordings of odorant receptor cells at the single sensilla level. This work shows for the first time that different odors evoked different responses within one neuron depending on the chemical structure of the odor. The present work offers new insights into the dynamic properties of olfactory transduction in Drosophila melanogaster and describes time dependent parameters underlying these properties.
Resumo:
Für die cAMP-abhängige Proteinkinase (Proteinkinase A, PKA) in Drosophila melanogaster sind zwei regulatorische Untereinheiten (R1 und R2) und drei katalytische Untereinheiten (C1, C2 und C3) beschrieben. Außerdem gibt es eine weitere mögliche katalytische Untereinheit mit einer auffälligen Ähnlichkeit zu C2, dementsprechend C2-like genannt. Für R2, C2 und C2-like konnte bereits gezeigt werden, dass sie im Hodengewebe synthetisiert werden. Die Expression der verbleibenden PKA-Untereinheiten im Hodengewebe wurde in dieser Arbeit mit Hilfe von RT-PCR, Northern-Hybridisierungen, GFP-Reporter- bzw. GFP-Fusionskonstrukten untersucht. So konnte gezeigt werden, dass alle PKA-Untereinheiten im Hoden exprimiert werden. Dabei wird von jeder Untereinheit mindestens eine Isoform in den Keimzellen synthetisiert. R2 und C1 treten außerdem in den die Keimzellen umschließenden Zystenzellen auf, wobei R2 während der gesamten Spermatogenese exprimiert wird, C1 jedoch nur am Ende des Prozesses während des Stadiums der elongierten Spermatiden. In BRET-Analysen sind die beiden Untereinheiten in der Lage, miteinander zu interagieren. Somit könnten sie zusammen eine Funktion in den Zystenzellen vermitteln, die während der Differenzierungsphase stattfindet. Die katalytischen Untereinheiten C2, C2-like und zwei Isoformen von C3 (B und B') werden keimzellspezifisch exprimiert. Die BRET-Analysen lassen darauf schließen, dass C2 und C3 B’ möglicherweise keine funktionellen PKA-Untereinheiten sind. Auch der Versuch, durch Antisense- und RNAi-Konstrukte einen mutanten Phänotyp zu erzeugen, schlug fehl. Das könnte ein Hinweis darauf sein, dass die beiden Untereinheiten C2 und C3 B’ gar keine oder zumindest keine essentielle Funktion während der Spermatogenese haben. Das C2-like as-Konstrukt führte hingegen zu einem starken Phänotyp. Schon eine geringe Reduktion der endogenen c2-like-mRNA führte zu einer starken Beeinträchtigung der männlichen Fertilität. Die elongierten Spermatiden zeigten einen Defekt in der Kernmorphologie und waren nicht in der Lage, Individualisierungskomplexe auszubilden. Dementsprechend fand keine Individualisierung statt und es konnten keine reifen Spermien in die Samenblase entlassen werden. Der mutante Phänotyp weist darauf hin, dass C2-like an mehreren Prozessen während der Keimzelldifferenzierung beteiligt ist. Gao et al. veröffentlichten 2008 Listen mit potentiellen PKA-Substraten für alle bekannten katalytischen Untereinheiten verschiedener Organismen. Zwei Substrat-Kandidaten für C2-like sind die testisspezifischen Serin/Threonin-Kinasen (TSSK) CG9222 und CG14305. Beide Proteine werden exklusiv im Hoden exprimiert. CG9222-GFP lokalisierte in die Individualisierungskomplexe (ICs) elongierter Spermatiden. Das entsprechende RNAi-Konstrukt zeigte allerdings keinen Effekt auf den Zusammenbau der ICs. Dagegen zeigte CG14305-GFP keine subzelluläre Lokalisierung, sondern war cytoplasmatisch über die gesamten Spermatiden verteilt. Das entsprechende RNAi-Konstrukt führte aber dazu, dass keine ICs ausgebildet werden. Beide Proteine spielen dementsprechend eine Rolle während der Individualisierung. Dies ist in Übereinstimmung mit dem Phänotyp der C2-like as-mutanten Männchen. So ist es vorstellbar, dass CG9222 und CG14305 von C2-like phosphoryliert werden müssen, um ihre Funktion während der Individualisierung der Spermatiden erfüllen zu können. Ein direkter Nachweis, dass C2-like die beiden Proteine tatsächlich phosphorylieren kann, steht allerdings noch aus.