3 resultados para Distance course

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the process of urbanization, natural and semi-natural landscapes are increasingly cherished as open space and recreational resource. Urban rivers are part of this kind of resource and thus play an important role in managing urban resilience and health. Employing the example of Tianjin, this doctoral dissertation research aims at learning to understand how to plan and design for the interface zones between urban water courses and for the land areas adjacent to such water courses. This research also aims at learning how to link waterfront space with other urban space in order to make a recreational space system for the benefit of people. Five questions of this dissertation are: 1) what is the role of rivers in spatial and open space planning? 2) What are the human needs regarding outdoor open space? 3) How do river and water front spatial structures affect people's recreational activities? 4) How to define the recreational service of urban river and waterfront open space? 5) How might answering these question change planning and design of urban open space? Quantitative and qualitative empirical approaches were combined in this study for which literature review and theoretical explorations provide the basis. Empirical investigations were conducted in the city of Tianjin. The quantitative approach includes conducting 267 quantitative interviews, and the qualitative approach includes carrying out field observations and mappings. GIS served to support analysis and visualization of empirical information that was generated through this study. By responding to the five research questions, findings and lessons include the following: 1) In the course of time rivers have gained importance in all levels and scales of spatial planning and decision making. Regarding the development of ecological networks, mainly at national scale, rivers are considered significant linear elements. Regarding regional and comprehensive development, river basins and watersheds are often considered as the structural link for strategic ecological, economic, social and recreational planning. For purposes of urban planning, particularly regarding recreational services in cities, the distribution of urban open spaces often follows the structure of river systems. 2) For the purpose of classifying human recreational needs that relate to outdoor open space Maslow's hierarchy of human needs serves as theoretical basis. The classes include geographical, safety, physiological, social and aesthetic need. These classes serve as references while analyzing river and waterfront open space and other kinds of open space. 3) Regarding the question how river and waterfront spatial structures might affect people's recreational activities, eight different landscape units were identified and compared in the case study area. Considering the thermal conditions of Tianjin, one of these landscape units was identified as affording the optimal spatial arrangement which mostly meets recreational needs. The size and the shape of open space, and the plants present in an open space have been observed as being most relevant regarding recreational activities. 4) Regarding the recreational service of urban river and waterfront open space the results of this research suggest that the recreational service is felt less intensively as the distances between water 183 front and open space user’s places of residence are increasing. As a method for estimating this ‘Service Distance Effect’ the following formula may be used: Y = a*ebx. In this equation Y means the ‘Service Distance’ between homes and open space, and X means the percentage of the people who live within this service distance. Coefficient "a" represents the distance of the residential area nearest to the water front. The coefficient "b" is a comprehensive capability index that refers to the size of the available and suitable recreational area. 5) Answers found to the questions above have implications for the planning and design of urban open space. The results from the quantitative study of recreational services of waterfront open space were applied to the assessment of river-based open space systems. It is recommended that such assessments might be done employing the network analysis function available with any GIS. In addition, several practical planning and designing suggestions are made that would help remedy any insufficient base for satisfying recreational needs. The understanding of recreational need is considered helpful for the proposing planning and designing ideas and for the changing of urban landscapes. In the course of time Tianjin's urban water system has shrunk considerably. At the same time rivers and water courses have shaped Tianjin's urban structure in noticeable ways. In the process of urbanization water has become increasingly important to the citizens and their everyday recreations. Much needs to be changed in order to improve recreational opportunities and to better provide for a livable city, most importantly when considering the increasing number of old people. Suggestions made that are based on results of this study, might be implemented in Tianjin. They are 1) to promote the quality of the waterfront open space and to make all linear waterfront area accessible recreational spaces. Then, 2), it is advisable to advocate the concept of green streets and to combine green streets with river open space in order to form an everyday recreational network. And 3) any sound urban everyday recreational service made cannot rely on only urban rivers; the whole urban structure needs to be improved, including adding small open space and optimize the form of urban communities, finally producing a multi-functional urban recreational network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.