7 resultados para Disruption
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
RNA interference (RNAi) is a recently discovered process, in which double stranded RNA (dsRNA) triggers the homology-dependant degradation of cognate messenger RNA (mRNA). In a search for new components of the RNAi machinery in Dictyostelium, a new gene was identified, which was called helF. HelF is a putative RNA helicase, which shows a high homology to the helicase domain of Dicer, to the helicase domain of Dictyostelium RdRP and to the C. elegans gene drh-1, that codes for a dicer related DExH-box RNA helicase, which is required for RNAi. The aim of the present Ph.D. work was to investigate the role of HelF in PTGS, either induced by RNAi or asRNA. A genomic disruption of the helF gene was performed, which resulted in a distinct mutant morphology in late development. The cellular localization of the protein was elucidated by creating a HelF-GFP fusion protein, which was found to be localized in speckles in the nucleus. The involvement of HelF in the RNAi mechanism was studied. For this purpose, RNAi was induced by transformation of RNAi hairpin constructs against four endogenous genes in wild type and HelF- cells. The silencing efficiency was strongly enhanced in the HelF K.O. strain in comparison with the wild type. One gene, which could not be silenced in the wild type background, was successfully silenced in HelF-. When the helF gene was disrupted in a secondary transformation in a non-silenced strain, the silencing efficiency was strongly improved, a phenomenon named here “retrosilencing”. Transcriptional run-on experiments revealed that the enhanced gene silencing in HelF- was a posttranscriptional event, and that the silencing efficiency depended on the transcription levels of hairpin RNAs. In HelF-, the threshold level of hairpin transcription required for efficient silencing was dramatically lowered. The RNAi-mediated silencing was accompanied by the production of siRNAs; however, their amount did not depend on the level of hairpin transcription. These results indicated that HelF is a natural suppressor of RNAi in Dictyostelium. In contrast, asRNA mediated gene silencing was not enhanced in the HelF K.O, as shown for three tested genes. These results confirmed previous observations (H. Martens and W. Nellen, unpublished) that although similar, RNAi and asRNA mediated gene silencing mechanisms differ in their requirements for specific proteins. In order to characterize the function of the HelF protein on a molecular level and to study its interactions with other RNAi components, in vitro experiments were performed. Besides the DEAH-helicase domain, HelF contains a double-stranded RNA binding domain (dsRBD) at its N-terminus, which showed high similarity to the dsRBD domain of Dicer A from Dictyostelium. The ability of the recombinant dsRBDs from HelF and Dicer A to bind dsRNA was examined and compared. It was shown by gel-shift assays that both HelF-dsRBD and Dicer-dsRBD could bind directly to long dsRNAs. However, HelF-dsRBD bound more efficiently to dsRNA with imperfect matches than to perfect dsRNA. Both dsRBDs bound specifically to a pre-miRNA substrate (pre-let-7). The results suggested that most probably there were two binding sites for the proteins on the pre-miRNA substrate. Moreover, it was shown that HelF-dsRBD and Dicer-dsRBD have siRNA-binding activity. The affinities of the two dsRBDs to the pre-let-7 substrate were also examined by plasmon surface resonance analyses, which revealed a 9-fold higher binding affinity of the Dicer-dsRBD to pre-let-7 compared to that of the HelF-dsRBD. The binding of HelF-dsRBD to the pre-let-7 was impaired in the presence of Mg2+, while the Dicer-dsRBD interaction with pre-let-7 was not influenced by the presence of Mg2+. The results obtained in this thesis can be used to postulate a model for HelF function. In this, HelF acts as a nuclear suppressor of RNAi in wild type cells by recognition and binding of dsRNA substrates. The protein might act as a surveillance system to avoid RNAi initiation by fortuitous dsRNA formation or low abundance of dsRNA trigger. If the protein acts as an RNA helicase, it could unwind fold-back structures in the nucleus and thus lead to decreased RNAi efficiency. A knock-out of HelF would result in initiation of the RNAi pathway even by low levels of dsRNA. The exact molecular function of the protein in the RNAi mechanism still has to be elucidated. RNA interferenz (RNAi) ist ein in jüngster Zeit entdeckter Mechanismus, bei dem doppelsträngige RNA Moleküle (dsRNA) eine Homologie-abhängige Degradation einer verwandten messenger-RNA (mRNA) auslösen. Auf der Suche nach neuen Komponenten der RNAi-Maschinerie in Dictyostelium konnte ein neues Gen (helF) identifiziert werden. HelF ist eine putative RNA-Helikase mit einer hohen Homologie zur Helikasedomäne der bekannten Dicerproteine, der Helikasedomäne der Dictyostelium RdRP und zu dem C. elegans Gen drh-1, welches für eine Dicer-bezogene DExH-box RNA Helikase codiert, die am RNAi-Mechanismus beteiligt ist. Das Ziel dieser Arbeit war es, die Funktion von HelF im Zusammenhang des RNAi oder asRNA induzierten PTGS zu untersuchen. Es wurde eine Unterbrechung des helF-Gens auf genomischer Ebene (K.O.) vorgenommen, was bei den Mutanten zu einer veränderten Morphologie in der späten Entwicklung führte. Die Lokalisation des Proteins in der Zelle konnte mit Hilfe einer GFP-Fusion analysiert werden und kleinen Bereichen innerhalb des Nukleus zugewiesen werden. Im Weiteren wurde der Einfluss von HelF auf den RNAi-Mechanismus untersucht. Zu diesem Zweck wurde RNAi durch Einbringen von RNAi Hairpin-Konstrukten gegen vier endogene Gene im Wiltypstamm und der HelF--Mutante induziert. Im Vergleich zum Wildtypstamm konnte im HelF--Mutantenstamm eine stark erhöhte „Silencing“-Effizienz nachgewiesen werden. Ein Gen, welches nach RNAi Initiation im Wildtypstamm unverändert blieb, konnte im HelF--Mutantenstamm erfolgreich stillgelegt werden. Durch sekundäres Einführen einer Gendisruption im helF-Locus in einen Stamm, in welchem ein Gen nicht stillgelegt werden konnte, wurde die Effizienz des Stilllegens deutlich erhöht. Dieses Phänomen wurde hier erstmals als „Retrosilencing“ beschrieben. Mit Hilfe von transkriptionellen run-on Experimenten konnte belegt werden, dass es sich bei dieser erhöhten Stilllegungseffizienz um ein posttranskriptionelles Ereignis handelte, wobei die Stillegungseffizienz von der Transkriptionsstärke der Hairpin RNAs abhängt. Für die HelF--Mutanten konnte gezeigt werden, dass der Schwellenwert zum Auslösen eines effizienten Stillegens dramatisch abgesenkt war. Obwohl die RNAi-vermittelte Genstilllegung immer mit der Produktion von siRNAs einhergeht, war die Menge der siRNAs nicht abhängig von dem Expressionsniveau des Hairpin-Konstruktes. Diese Ergebnisse legen nahe, dass es sich bei der HelF um einen natürlichen Suppressor des RNAi-Mechanismus in Dictyostelium handelt. Im Gegensatz hierzu war die as-vermittelte Stilllegung von drei untersuchten Genen im HelF-K.O. im Vergleich zum Wildyp unverändert. Diese Ergebnisse bestätigten frühere Beobachtungen (H. Martens und W. Nellen, unveröffentlicht), wonach die Mechanismen für RNAi und asRNA-vermittelte Genstilllegung unterschiedliche spezifische Proteine benötigen. Um die Funktion des HelF-Proteins auf der molekularen Ebene genauer zu charakterisieren und die Interaktion mit anderen RNAi-Komponenten zu untersuchen, wurden in vitro Versuche durchgeführt. Das HelF-Protein enthält, neben der DEAH-Helikase-Domäne eine N-terminale Doppelstrang RNA bindende Domäne (dsRBD) mit einer hohen Ähnlichkeit zu der dsRBD des Dicer A aus Dictyostelium. Die dsRNA-Bindungsaktivität der beiden dsRBDs aus HelF und Dicer A wurde analysiert und verglichen. Es konnte mithilfe von Gel-Retardationsanalysen gezeigt werden, dass sowohl HelF-dsRBD als auch Dicer-dsRBD direkt an lange dsRNAs binden können. Hierbei zeigte sich, dass die HelF-dsRBD eine höhere Affinität zu einem imperfekten RNA-Doppelstrang besitzt, als zu einer perfekt gepaarten dsRNA. Für beide dsRBDs konnte eine spezifische Bindung an ein pre-miRNA Substrat nachgewiesen werden (pre-let-7). Dieses Ergebnis legt nah, dass es zwei Bindestellen für die Proteine auf dem pre-miRNA Substrat gibt. Überdies hinaus konnte gezeigt werden, dass die dsRBDs beider Proteine eine siRNA bindende Aktivität besitzen. Die Affinität beider dsRBDs an das pre-let-7 Substrat wurde weiterhin mit Hilfe der Plasmon Oberflächen Resonanz untersucht. Hierbei konnte eine 9-fach höhere Bindeaffinität der Dicer-dsRBD im Vergleich zur HelF-dsRBD nachgewiesen werden. Während die Bindung der HelF-dsRBD an das pre-let-7 durch die Anwesenheit von Mg2+ beeinträchtigt war, zeigte sich kein Einfluß von Mg2+ auf das Bindeverhalten der Dicer-dsRBD. Mit Hilfe der in dieser Arbeit gewonnen Ergebnisse lässt sich ein Model für die Funktion von HelF postulieren. In diesem Model wirkt HelF durch Erkennen und Binden von dsRNA Substraten als Suppressor von der RNAi im Kern. Das Protein kann als Überwachungsystem gegen eine irrtümliche Auslösung von RNAi wirken, die durch zufällige dsRNA Faltungen oder eine zu geringe Häufigkeit der siRNAs hervorgerufen sein könnte. Falls das Protein eine Helikase-Aktivität besitzt, könnte es rückgefaltete RNA Strukturen im Kern auflösen, was sich in einer verringerten RNAi-Effizienz wiederspiegelt. Durch Ausschalten des helF-Gens würde nach diesem Modell eine erfolgreiche Auslösung von RNAi schon bei sehr geringer Mengen an dsRNA möglich werden. Das Modell erlaubt, die exakte molekulare Funktion des HelF-Proteins im RNAi-Mechanismus weiter zu untersuchen.
Resumo:
"Funktionelle Analyse der LC-FACS in Dictyostelium discoideum" Das Dictyostelium discoideum Gen fcsA kodiert für ein 75 kDa großes Protein. Es kann durch Homologieanyalysen der Amino-säuresequenz zu den "long-chain fatty acyl-CoA"-Synthetasen ge-rechnet werden, die lang-kettige Fettsäuren durch die kovalente Bindung von Coenzym A akti-vie-ren und damit für diverse Reak-tionen in Stoffwechsel und Molekül-Synthese der Zelle verfügbar machen. Die hier untersuchte D. discoideum LC-FACS lokalisiert als peripher assoziiertes Protein an der cytosolischen Seite der Membran von Endo-somen und kleiner Vesikel. Bereits kurz nach der Bildung in der frühen sauren Phase kann die Lokalisation der LC-FACS auf Endosomen ge-zeigt werden. Sie dissoziiert im Laufe ihrer Neutra-li-sierung und kann auf späten Endosomen, die vor ihrer Exocytose stehen nicht mehr nach-gewiesen werden. Ein Teil der kleinen die in der gesamte Zelle verteilten kleinen Vesikel zeigt eine Kolokalisation mit lysosomalen Enzymen. Trotz des intrazellulären Verteilungs-mus-ters, das eine Beteiligung dieses Pro-teins an der Endocytose nahe-legt, konnte kein signifikanter Rückgang der Pino- und Phagocytose-Rate in LC-FACS Nullmutanten beobachtet werden. Der endo-cy-to-ti-sche Transit ist in diesen Zellen etwas verlängert, außerdem zeigen die Endosomen einen deutlich erhöhten pH-Wert, was zu einer weniger effektiven Prozessierung eines lysosomalen Enzyms führt (a-Mannosidase). Die Funktion der LC-FACS ist die Aufnahme von langkettigen Fettsäuren aus dem Lumen der Endosomen.
Resumo:
Der eukaryotische Mikroorganismus Dictyostelium discoideum lebt als einzellige Amöbe solange ausreichende Nahrungsressourcen zur Verfügung stehen. Sobald Nahrungsmangel eintritt, entwickeln sich die Zellen von einem einzelligen zu einem mehrzelligen Zustand, der mit einem multizellulären Fruchtkörper abschließt. Dieser Prozess wird durch eine Reihe aufeinanderfolgender Signale organisiert, die eine differentielle Genexpression regulieren. Die Gene der Discoidin I Familie gehören zu den Ersten, die im Laufe des Wachstums-Differenzierungs-Übergangs (engl. GDT) aktiviert werden. Sie eignen sich daher vorzüglich als Marker für den Beginn der Entwicklung. Mit Hilfe einer REMI-Mutagenese und Discoidin I als molekularem Marker sind verschiedene Komponenten des Wachstums-Differenzierungs-Übergangs in unserer Arbeitsgruppe identifiziert worden (Zeng et al., 2000 A und B; Riemann und Nellen, persönliche Mitteilung). Mit demselben Ansatz wurde in der vorliegenden Arbeit eine REMI-Mutante identifiziert, die eine Fehl-Expression von Discoidin zeigte und einen axenischen Wachstumsdefekt bei 15 °C aufwies. Das Gen wurde als Homolog zum humanen Tafazzin-Gen identifiziert. Dieses Gen wurde zur Rekonstruktion des Phänotyps über homologe Rekombination erneut disruptiert, was wie erwartet zu dem zuerst beschriebenen Phänotyp führte. Folgerichtig ergab eine Überexpression des Gens in den Mutanten eine Komplementation des Phänotyps. Immunfluoreszenz-Experimente zeigten eine mitochondriale Lokalisation des Dictyostelium discoideum Taffazzin Proteins. Dass ein mitochondriales Protein in Zusammenhang mit dem Wachstums-Differenzierungs-Übergang steht, ist ein unerwarteter Befund, der aber als Hinweis darauf gewertet werden kann, dass Mitochondrien einen direkten Einfluss auf die entwicklungsspezifische Signaltransduktion ausüben. Die Taffazzin Disruptions-Mutante in Dictyostelium führte zu einem abnormalen Cardiolipin Metabolismus. Dieses Phospholipid ist ein charakteristischer Bestandteil der inneren Mitochondrienmembran und für die Funktion verschiedener Enzyme erforderlich. Unsere vorläufigen Analysen des Phospholipid-Gehalts zeigten Übereinstimmung mit Daten von Patienten mit Barth-Syndrom, einer humanen Erkrankung, bei der das Taffazzin-Gen Mutationen aufweist, und mit Hefe-Mutanten dieses Gens. Dies zeigt den Wert von Dictyostelium discoideum als einen weiteren Modelorganismus zur Untersuchung des Barth-Syndroms und zur Erprobung möglicher Therapieansätze.
Resumo:
With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.
Resumo:
To increase the organic matter (OM) content in the soil is one main goal in arable soil management. The adoption of tillage systems with reduced tillage depth and/or frequency (reduced tillage) or of no-tillage was found to increase the concentration of soil OM compared to conventional tillage (CT; ploughing to 20-30 cm). However, the underlying processes are not yet clear and are discussed contradictorily. So far, few investigations were conducted on tillage systems with a shallow tillage depth (minimum tillage = MT; maximum tillage depth of 10 cm). A better understanding of the interactions between MT implementation and changes in OM transformation in soils is essential in order to evaluate the possible contribution of MT to a sustainable management of arable soils. The objectives of the present thesis were (i) to compare OM concentrations, microbial biomass, water-stable aggregates, and particulate OM (POM) between CT and MT soils, (ii) to estimate the temporal variability of water-stable aggregate size classes occurring in the field and the dynamics of macroaggregate (>250 µm) formation and disruption under controlled conditions, (iii) to investigate whether a lower disruption or a higher formation rate accounts for a higher occurrence of macroaggregates under MT compared to CT, (iv) to determine which fraction is the major agent for storing the surplus of OM found under MT compared to CT, and (v) to observe the early OM transformation after residue incorporation in different tillage systems simulated. Two experimental sites (Garte-Süd and Hohes Feld) near Göttingen, Germany, were investigated. Soil type of both sites was a Haplic Luvisol. Since about 40 years, both sites receive MT by a rotary harrow (to 5-8 cm depth) and CT by a plough (to 25 cm depth). Surface soils (0-5 cm) and subsoils (10-20 cm) of two sampling dates (after fallow and directly after tillage) were investigated for concentrations of organic C (Corg) and total N (N), different water-stable aggregate size classes, different density fractions (for the sampling date after fallow only), microbial biomass, and for biochemically stabilized Corg and N (by acid hydrolysis; for the sampling date after tillage only). In addition, two laboratory incubations were performed under controlled conditions: Firstly, MT and CT soils were incubated (28 days at 22°C) as bulk soil and with destroyed macroaggregates in order to estimate the importance of macroaggregates for the physical protection of the very labile OM against mineralization. Secondly, in a microcosm experiment simulating MT and CT systems with soil <250 µm and with 15N and 13C labelled maize straw incorporated to different depths, the mineralization, the formation of new macroaggregates, and the partitioning of the recently added C and N were followed (28 days at 15°C). Forty years of MT regime led to higher concentrations of microbial biomass and of Corg and N compared to CT, especially in the surface soil. After fallow and directly after tillage, a higher proportion of water-stable macroaggregates rich in OM was found in the MT (36% and 66%, respectively) than in the CT (19% and 47%, respectively) surface soils of both sites (data shown are of the site Garte-Süd only). The subsoils followed the same trend. For the sampling date after fallow, no differences in the POM fractions were found but there was more OM associated to the mineral fraction detected in the MT soils. A large temporal variability was observed for the abundance of macroaggregates. In the field and in the microcosm simulations, macroaggregates were found to have a higher formation rate after the incorporation of residues under MT than under CT. Thus, the lower occurrence of macroaggregates in CT soils cannot be attributed to a higher disruption but to a lower formation rate. A higher rate of macroaggregate formation in MT soils may be due to (i) the higher concentrated input of residues in the surface soil and/or (ii) a higher abundance of fungal biomass in contrast to CT soils. Overall, as a location of storage of the surplus of OM detected under MT compared to CT, water-stable macroaggregates were found to play a key role. In the incubation experiment, macroaggregates were not found to protect the very labile OM against mineralization. Anyway, the surplus of OM detected after tillage in the MT soil was biochemically degradable. MT simulations in the microcosm experiment showed a lower specific respiration and a less efficient translocation of recently added residues than the CT simulations. Differences in the early processes of OM translocation between CT and MT simulations were attributed to a higher residue to soil ratio and to a higher proportion of fungal biomass in the MT simulations. Overall, MT was found to have several beneficial effects on the soil structure and on the storage of OM, especially in the surface soil. Furthermore, it was concluded that the high concentration of residues in the surface soil of MT may alter the processes of storage and decomposition of OM. In further investigations, especially analysis of the residue-soil-interface and of effects of the depth of residue incorporation should be emphasised. Moreover, further evidence is needed on differences in the microbial community between CT and MT soils.
Resumo:
The soil amoebae Dictyostelium discoideum take up particles from their environment in order to obtain nutrition. The particle transits through the cell within a phagosome that fuses with organelles of different molecular compositions, undergoing a gradual degradation by different sets of hydrolytic enzymes. Griffiths’ concept of “phagosome individuality” predicts signaling from phagosomes into the cytoplasm, which might regulate many aspects of cell physiology. The finding that Dictyostelium cells depleted of the lysozyme AlyA or over-expressing the esterase Gp70 exhibit increased uptake of food particles, led to the postulation of a signaling cascade between endocytic compartments and the cytoskeletal uptake machinery at the plasma membrane. Assuming that Gp70 acts downstream of AlyA, gene-expression profiling of both mutants revealed different and overlapping sets of misregulated genes that might participate in this signaling cascade. Based on these results, we analyzed the effects of the artificial misregulation of six candidate genes by over-expression or negative genetic interference, in order to reconstruct at least part of the signaling pathway. SSB420 and SSL793 were chosen as candidates for the first signaling step, as they were up-regulated in AlyA-null cells and remained unaltered in the Gp70 over-expressing cells. The over-expression of SSB420 enhanced phagocytosis and raised the expression levels of Gp70, supporting its involvement in the signaling pathway between AlyA and Gp70 as a positive regulator of phagocytosis. However, this was not the case of cells over-expressing SSL793, as this mutation had no effects on phagocytosis. For the signaling downstream of Gp70, we studied four commonly misregulated genes in AlyA-depleted and Gp70 over-expressing cells. The expression levels of SLB350, SSB389 and TipD were lower in both mutants and therefore these were assumed as possible candidates for the negative regulation of phagocytosis. Cells depleted of SLB350 exhibited an increased phagocytic activity and no effect on Gp70 expression, proving its participation in the signaling pathway downstream of Gp70. Unlike SLB350, the disruption of the genes coding for SSB389 and TipD had no effects on particle uptake, excluding them from the pathway. The fourth candidate was Yipf1, the only gene that was commonly up-regulated in both mutants. Yet, the artificial over-expression of this protein had no effects on phagocytosis, so this candidate is also not included in the signaling pathway. Furthermore, localizing the products of the candidate genes within the cell helped unveiling several cellular organelles that receive signals from the phagosome and transduce them towards the uptake machinery.
Resumo:
In eukaryotes, wobble uridines in the anticodons of tRNALysUUU, tRNAGluUUC and tRNAGlnUUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNALysUUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNALysUUU hypomodification and malfunction.