1 resultado para Discrete Regression and Qualitative Choice Models
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (5)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (46)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (64)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (77)
- Central European University - Research Support Scheme (2)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (9)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (31)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (7)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (24)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (22)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (6)
- Duke University (5)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institute of Public Health in Ireland, Ireland (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (6)
- Instituto Superior de Psicologia Aplicada - Lisboa (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (6)
- Nottingham eTheses (6)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (14)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (12)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (68)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Saúde Pública - SP (11)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (30)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (68)
- Université de Montréal (1)
- Université de Montréal, Canada (28)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (20)
- University of Queensland eSpace - Australia (67)
- University of Southampton, United Kingdom (2)
- University of Washington (3)
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.