2 resultados para DNA Methylierung Epigenetik AHCY Methionin
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die Erforschung posttranslationaler Veränderungen von Chromatin-Komponenten stellt einen wichtigen Pfeiler der Epigenetik dar. Epigenetische Mechanismen verändern die Aussagekraft der DNA-Sequenz und entscheiden somit beispielsweise über die Aktivierung oder Stilllegung von Genen. Ein häufiges Ziel der Stilllegung sind springende genetische Elemente, die ansonsten zur Destabilisierung des Genoms führen können. Im Rahmen dieser Arbeit wurden zwei unterschiedliche Stilllegungsmechanismen der Transpo-sons DIRS-1 und Skipper aus Dictyostelium discoideum untersucht. Dabei konnte gezeigt werden, auf welche Weise die RNA-Interferenz (RNAi) zur Zerstörung des DIRS-1 Transkripts führt und dass die Ursache dafür in der Promotor-Aktivität des Elements selbst liegt. Eine überraschende Erkenntnis konnte auch für das zweite Element gewonnen werden. Experimente legen nahe, dass die in der kodierenden Skipper-Sequenz gefundene Chromo-Domäne zu einer gezielten Integration des Elements in bereits stillgelegte heterochromatische Bereiche führt. Diese zeichnen sich vor allem durch eine spezielle posttranslationale Histon-Modifikation, der Methylierung von Lysin 9 des Histons H3 (H3K9), aus. Während zu der Methylierung von H3K9 bereits Arbeiten erschienen sind, war ein Großteil der anderen in Dictyostelium discoideum kodierten Histon-Modifikationen bislang unbekannt. Mit Hilfe der Massenspektrometrie konnte erstmalig eine umfassende Karte der veränderten Aminosäuren erstellt werden. Dabei konnten neue, bislang für keinen Organismus beschriebene Modifikationsziele identifiziert werden. Weitere lassen durch einen Vergleich mit Modellorganismen wie Hefe und Fruchtfliege Schlüsse auf die Evolution des Histon-Codes zu. Die erstellte Karte kann in Zukunft Forschern als Grundlage dienen, um weitergehende Fragestellungen in Bezug auf die Funktionen der hier vorgestellten Modifikationen zu erforschen. Ein weiteres Ergebnis dieser Arbeit stellt die Charakterisierung posttranslationaler Veränderungen des an H3K9 bindenden Heterochromatin-Proteins 1 (HP1) dar. Neben einer ersten Analyse der in Dictyostelium discoideum vorhandenen Modifikationen der beiden Homologe HcpA und HcpB, wurde auch die Funktion der in der Chromoshadow-Domäne lokalisierten Acetylierung erforscht. Hierbei konnte gezeigt werden, dass ein Fehlen des veränderten Lysins zu einem deutlichen Phänotyp in der Sporenform und im Wachstum der Zellen führt. Als Ursache dafür konnte eine Veränderung in der Fähigkeit zur Gen-Stilllegung durch das mutierte HP1-Protein nachgewiesen werden. Dies gelang mit Hilfe eines dafür etablierten Reporters auf Basis des Gal4/UAS-Systems aus der Fruchtfliege und beweist erstmalig die Funktion einer Acetylierung der HP1-Proteine.
Resumo:
Obwohl die DNA Methyltransferase 2 (Dnmt2) hoch konserviert ist und zu der am weitesten verbreiteten eukaryotischen MTase-Familie gehört, ist ihre biologische Funktion nach wie vor unklar. Nachdem lange Zeit keine DNA Methylierungsaktivität nachgewiesen werden konnte, wurde vor einigen Jahren über geringe Mengen an 5-Methylcytosin (5mC) in Retroelementen der “Dnmt2-only”-Organismen D. melanogaster, D. discoideum und E. histolytica berichtet (Kunert et al. 2003; Fisher et al. 2004; Kuhlmann et al. 2005; Phalke et al. 2009). Als kurze Zeit später robuste Methylierung der tRNAAsp durch humane Dnmt2 gezeigt wurde (Goll et al. 2006), wurde zunächst eine Dualspezifität des Enzyms vorgeschlagen (Jeltsch et al. 2006). Neuere Daten zum 5mC-Status verschiedener „Dnmt2-only“-Organismen bilden Anlass für kontroverse Diskussionen über Ausmaß und Bedeutung der DNA Methyltransferaseaktivität von Dnmt2 (Schaefer et al. 2010a; Krauss et al. 2011). Die vorliegende Arbeit konzentriert sich auf die Identifizierung neuer RNA Substrate des Dnmt2-Homologs DnmA aus D. discoideum sowie die biologische Bedeutung der tRNA-Methylierung durch Dnmt2. Wie in anderen Organismen beschrieben, fungiert auch DnmA als tRNAAsp(GUC) MTase in vitro und in vivo. Zusätzlich konnte in vitro tRNAGlu(UUC) als neues Substrat der Dnmt2-Homologe aus D. discoideum und dem Menschen identifiziert werden. In einem Kooperationsprojekt wurde außerdem auch tRNAAsp-Methylierungsaktivität für das Dnmt2-Homolog aus S. pombe (Pmt1) nachgewiesen. Crosslink-RNA-Immunopräzipitationen (RNA-CLIP) mit anschließender Next-Generation-Sequenzierung der mit DnmA assoziierten RNAs zeigen, dass DnmA mit tRNA Fragmenten interagiert, die sich vom Anticodonloop bis in den T-loop erstrecken. Neben der tRNAAsp(GUC) und tRNAGlu(UUC/CUC) sind Fragmente der tRNAGly(GCC) verstärkt angereichert. Inwiefern diese Fragmente eine biologische Funktion haben oder spezifische Degradationsprodukte darstellen, ist noch ungeklärt. Interessanterweise sind von einigen tRNAs wenige Sequenzen von antisense-Fragmenten in den RNA-CLIP Daten zu finden, die etwas kürzer, jedoch exakt komplementär zu den genannten sense-Fragmenten sind. Besonders stark sind diese Fragmente der tRNAGlu(UUC) vertreten. In einem weiteren RNA-CLIP Experiment wurden U-snRNAs, snoRNA und intergenische Sequenzen mit DnmA angereichert. Bei nachfolgenden in vitro Methylierungsstudien konnte ausschließlich die U2-snRNA als potentielles Nicht-tRNA-Substrat der hDnmt2 und DnmA identifiziert werden. Da tRNA Modifikationen im Anticodonloop die Codonerkennung beeinflussen können, wurde ein System etabliert um die Translationseffizienz eines GFP-Reportergens in Wildtyp- und dnmAKO-Zellen zu messen. In D. discoideum wird das Aspartat-Codon GAU ca. zehnmal häufiger genutzt als das GAC Codon, allerdings ist nur eine tRNAAsp(GUC) im Genom der Amöbe kodiert. Aus diesem Grund wurde zusätzlich die Frage adressiert, inwiefern die DnmA-abhängige Methylierung dieser tRNA das „Wobbling“ beeinflusst. Dazu wurde dem Reportergen jeweils eine (GAU)5- und (GAC)5-Leadersequenz vorgeschaltet. Entgegen der Annahme wurde der (GAC)5-Leader in beiden Stämmen etwas effizienter translatiert. Insgesamt zeigte der dnmAKO-Stamm eine leicht erhöhte Translationseffizienz der Reportergene. Vergleichende Analysen zur Aufnahme von Fremd-DNA zeigten signifikant reduzierte Transformationseffizienzen mit einem integrierenden Plasmid in dnmAKO-Zellen. Ein weiterer dnmAKO-Stamm zeigte diesen Effekt jedoch nicht, wobei bei derselben Mutante eine deutlich reduzierte Aufnahme eines extrachromosomalen Plasmids zu verzeichnen war. Untersuchungen zum Einfluss von DnmA auf die Regulation des Retroelements skipper ergaben keinen Zusammenhang zwischen der Generierung kleiner RNAs und der erhöhten Transkription des Retrotransposons in dnmAKO-Zellen (Kuhlmann et al. 2005). Durch Kompensationsversuche sowie Experimente mit einer weiteren dnmAKO-Mutante konnte die Mobilisierung des Retrotransposons nicht eindeutig als DnmA-Funktion eingeordnet werden. In einem weiteren Projekt wurden die Bindung des m5C-bindenden Proteins EhMLBP aus E. histolytica an DNA mittels Rasterkraftmikroskopie abgebildet (Lavi et al. 2006). Neben vermutlich unspezifischen Endbindungsereignissen konnte eine bevorzugte Bindungsstelle des Proteins an LINE DNA (long intersperesed nuclear element) identifiziert werden. Möglicherweise fällt diese mit einem von zwei A/T-reichen Bereichen der LINE DNA zusammen, von denen vermutet wird, dass diese für die Bindung von EhMLBP an DNA von Bedeutung sind. Insgesamt bestätigen die Ergebnisse dieser Arbeit die tRNAAsp Methylierungsaktivität als konservierte Dnmt2-Funktion. Darüber hinaus erweitern sie das Substratspektrum der Dnmt2-Methyltransferasen im Bereich der tRNA. Außerdem wird erstmals ein potentielles Nicht-tRNA Substrat vorgeschlagen. Zusätzlich geben neu entdeckte Phänotypen Hinweise auf vielfältige zelluläre Dnmt2-Funktionen.