7 resultados para DIGESTION
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
A better understanding of effects after digestate application on plant community, soil microbial community as well as nutrient and carbon dynamics is crucial for a sustainable grassland management and the prevention of species and functional diversity loss. The specific research objectives of the thesis were: (i) to investigate effects after digestate application on grass species and soil microbial community, especially focussing on nitrogen dynamic in the plant-soil system and to examine the suitability of the digestate from the “integrated generation of solid fuel and biogas from biomass” (IFBB) system as fertilizer (Chapter 3). (ii) to investigate the relationship between plant community and functionality of soil microbial community of extensively managed meadows, taking into account temporal variations during the vegetation period and abiotic soil conditions (Chapter 4). (iii) to investigate the suitability of IFBB-concept implementation as grassland conservation measure for meadows and possible associated effects of IFBB digestate application on plant and soil microbial community as well as soil microbial substrate utilization and catabolic evenness (Chapter 5). Taken together the results indicate that the digestate generated during the IFBB process stands out from digestates of conventional whole crop digestion on the basis of higher nitrogen use efficiency and that it is useful for increasing harvestable biomass and the nitrogen content of the biomass, especially of L. perenne, which is a common species of intensively used grasslands. Further, a medium application rate of IFBB digestate (50% of nitrogen removed with harvested biomass, corresponding to 30 50 kg N ha-1 a-1) may be a possibility for conservation management of different meadows without changing the functional above- and belowground characteristic of the grasslands, thereby offering an ecologically worthwhile alternative to mulching. Overall, the soil microbial biomass and catabolic performance under planted soil was marginally affected by digestate application but rather by soil properties and partly by grassland species and legume occurrence. The investigated extensively managed meadows revealed a high soil catabolic evenness, which was resilient to medium IFBB application rate after a three-year period of application.
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.
Resumo:
Rising global energy needs and limited fossil fuel reserves have led to increased use of renewable energies. In Germany, this has entailed massive exploitation of agricultural biomass for biogas generation, associated with unsustainable farming practices. Organic agriculture not only reduces negative environmental impacts, organic farmers were also prime movers in anaerobic digestion (AD) in Germany. This study’s aim was to identify the structure, development, and characteristics of biogas production associated with organic farming systems in order to estimate further development, as well as energetic and associated agronomic potentials. Surveys were conducted among organic farms with AD technology. 144 biogas plants could be included in the analysis. Total installed electrical capacity was 30.8 MWel, accounting for only 0.8% of the total installed electrical capacity in the German biogas sector. Recently, larger plant types (>250 kWel) with increased use of (also purchased) energy crops have emerged. Farmers noticed increases in yields (22% on average) and quality of cash crops in arable farming through integrated biogas production. In conclusion, although the share of AD in organic farming is relatively small it can provide various complementary socio-ecological benefits such as the enhancement of food output through digestate fertilization without additional need for land, while simultaneously reducing greenhouse gas emissions from livestock manures and soils. However, to achieve this eco-functional intensification, AD systems and their management have to be well adapted to farm size and production focus and based primarily on residue biomass.
Resumo:
Städtische Biomassen der Grünflächen bilden eine potentielle, bisher weitgehend ungenutzte Ressource für Bioenergie. Kommunen pflegen die Grünflächen, lassen das Material aber verrotten oder führen es Deponien oder Müllverbrennungsanlagen zu. Diese Praxis ist kostenintensiv ohne für die Verwaltungen finanziellen Ausgleich bereitzustellen. Stattdessen könnte das Material energetisch verwertet werden. Zwei mögliche Techniken, um Bioenergie zu gewinnen, wurden mit krautigem Material des städtischen Straßenbegleitgrüns untersucht i) direkte anaerobe Fermentation (4 Schnitte im Jahr) und ii) „Integrierte Festbrennstoff- und Biogasproduktion aus Biomasse“ (IFBB), die Biomasse durch Maischen und mechanisches Entwässern in einen Presssaft und einen Presskuchen trennt (2 Schnitte im Jahr). Als Referenz wurde die aktuelle Pflege ohne Verwertungsoption mitgeführt (8faches Mulchen). Zusätzlich wurde die Eignung von Gras-Laub-Mischungen im IFBB-Verfahren untersucht. Der mittlere Biomasseertrag war 3.24, 3.33 und 5.68 t Trockenmasse ha-1 jeweils für die Pflegeintensitäten Mulchen, 4-Schnitt- und 2-Schnittnutzung. Obwohl die Faserkonzentration in der Biomasse der 2-Schnittnutzung höher war als im Material der 4-Schnittnutzung, unterschieden sich die Methanausbeuten nicht signifikant. Der Presskuchen aus dem krautigen Material des Straßenbegleitgrüns hatte einen Heizwert von 16 MJ kg-1 Trockenmasse, während der Heizwert des Presskuchens der Gras-Laub-Mischung in Abhängigkeit vom Aschegehalt zwischen 15 und 17 MJ kg-1 Trockenmasse lag. Der Aschegehalt der Mischungen war höher als der Grenzwert nach DIN EN 14961-6:2012 (für nicht-holzige Brennstoffe), was auf erhöhte Bodenanhaftung auf Grund der Erntemethoden zurückzuführen sein könnte. Der Aschegehalt des krautigen Materials vom Straßenrand hielt die Norm jedoch ein. Die Elementkonzentration (Ca, Cl, K, Mg, N, Na, P, S, Al, Cd, Cr, Cu, Mn, Pb, Si, Zn) im krautigen Material war generell ähnlich zu Landwirtschafts- oder Naturschutzgrünland. In den Mischungen nahm die Elementkonzentration (Al, Cl, K, N, Na, P, S, Si) mit zunehmendem Laubanteil ab. Die Konzentration von Ca, Mg und der Neutral-Detergenz-Fasern stieg hingegen an. Die IFBB-Technik reduzierte die Konzentrationen der in der Verbrennung besonders schädlichen Elemente Cl, K und N zuverlässig. Außer den potentiell hohen Aschegehalten, wurde während der Untersuchungen kein technischer Grund entdeckt, der einer energetischen Verwertung des getesteten urbanen Materials entgegenstehen würde. Ökonomische, soziale und ökologische Auswirkungen einer Umsetzung müssen beachtet werden. Eine oberflächliche Betrachtung auf Basis des bisherigen Wissens lässt hoffen, dass eine bioenergetische Verwertung städtischen Materials auf allen Ebenen nachhaltig sein könnte.