5 resultados para DENSITY-FUNCTIONAL THERMOCHEMISTRY

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Doktorarbeit wird eine akkurate Methode zur Bestimmung von Grundzustandseigenschaften stark korrelierter Elektronen im Rahmen von Gittermodellen entwickelt und angewandt. In der Dichtematrix-Funktional-Theorie (LDFT, vom englischen lattice density functional theory) ist die Ein-Teilchen-Dichtematrix γ die fundamentale Variable. Auf der Basis eines verallgemeinerten Hohenberg-Kohn-Theorems ergibt sich die Grundzustandsenergie Egs[γgs] = min° E[γ] durch die Minimierung des Energiefunktionals E[γ] bezüglich aller physikalischer bzw. repräsentativer γ. Das Energiefunktional kann in zwei Beiträge aufgeteilt werden: Das Funktional der kinetischen Energie T[γ], dessen lineare Abhängigkeit von γ genau bekannt ist, und das Funktional der Korrelationsenergie W[γ], dessen Abhängigkeit von γ nicht explizit bekannt ist. Das Auffinden präziser Näherungen für W[γ] stellt die tatsächliche Herausforderung dieser These dar. Einem Teil dieser Arbeit liegen vorausgegangene Studien zu Grunde, in denen eine Näherung des Funktionals W[γ] für das Hubbardmodell, basierend auf Skalierungshypothesen und exakten analytischen Ergebnissen für das Dimer, hergeleitet wird. Jedoch ist dieser Ansatz begrenzt auf spin-unabhängige und homogene Systeme. Um den Anwendungsbereich von LDFT zu erweitern, entwickeln wir drei verschiedene Ansätze zur Herleitung von W[γ], die das Studium von Systemen mit gebrochener Symmetrie ermöglichen. Zuerst wird das bisherige Skalierungsfunktional erweitert auf Systeme mit Ladungstransfer. Eine systematische Untersuchung der Abhängigkeit des Funktionals W[γ] von der Ladungsverteilung ergibt ähnliche Skalierungseigenschaften wie für den homogenen Fall. Daraufhin wird eine Erweiterung auf das Hubbardmodell auf bipartiten Gittern hergeleitet und an sowohl endlichen als auch unendlichen Systemen mit repulsiver und attraktiver Wechselwirkung angewandt. Die hohe Genauigkeit dieses Funktionals wird aufgezeigt. Es erweist sich jedoch als schwierig, diesen Ansatz auf komplexere Systeme zu übertragen, da bei der Berechnung von W[γ] das System als ganzes betrachtet wird. Um dieses Problem zu bewältigen, leiten wir eine weitere Näherung basierend auf lokalen Skalierungseigenschaften her. Dieses Funktional ist lokal bezüglich der Gitterplätze formuliert und ist daher anwendbar auf jede Art von geordneten oder ungeordneten Hamiltonoperatoren mit lokalen Wechselwirkungen. Als Anwendungen untersuchen wir den Metall-Isolator-Übergang sowohl im ionischen Hubbardmodell in einer und zwei Dimensionen als auch in eindimensionalen Hubbardketten mit nächsten und übernächsten Nachbarn. Schließlich entwickeln wir ein numerisches Verfahren zur Berechnung von W[γ], basierend auf exakten Diagonalisierungen eines effektiven Vielteilchen-Hamilton-Operators, welcher einen von einem effektiven Medium umgebenen Cluster beschreibt. Dieser effektive Hamiltonoperator hängt von der Dichtematrix γ ab und erlaubt die Herleitung von Näherungen an W[γ], dessen Qualität sich systematisch mit steigender Clustergröße verbessert. Die Formulierung ist spinabhängig und ermöglicht eine direkte Verallgemeinerung auf korrelierte Systeme mit mehreren Orbitalen, wie zum Beispiel auf den spd-Hamilton-Operator. Darüber hinaus berücksichtigt sie die Effekte kurzreichweitiger Ladungs- und Spinfluktuationen in dem Funktional. Für das Hubbardmodell wird die Genauigkeit der Methode durch Vergleich mit Bethe-Ansatz-Resultaten (1D) und Quanten-Monte-Carlo-Simulationen (2D) veranschaulicht. Zum Abschluss wird ein Ausblick auf relevante zukünftige Entwicklungen dieser Theorie gegeben.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the theoretical investigation of local phenomena (adsorption at surfaces, defects or impurities within a crystal, etc.) one can assume that the effects caused by the local disturbance are only limited to the neighbouring particles. With this model, that is well-known as cluster-approximation, an infinite system can be simulated by a much smaller segment of the surface (Cluster). The size of this segment varies strongly for different systems. Calculations to the convergence of bond distance and binding energy of an adsorbed aluminum atom on an Al(100)-surface showed that more than 100 atoms are necessary to get a sufficient description of surface properties. However with a full-quantummechanical approach these system sizes cannot be calculated because of the effort in computer memory and processor speed. Therefore we developed an embedding procedure for the simulation of surfaces and solids, where the whole system is partitioned in several parts which itsself are treated differently: the internal part (cluster), which is located near the place of the adsorbate, is calculated completely self-consistently and is embedded into an environment, whereas the influence of the environment on the cluster enters as an additional, external potential to the relativistic Kohn-Sham-equations. The basis of the procedure represents the density functional theory. However this means that the choice of the electronic density of the environment constitutes the quality of the embedding procedure. The environment density was modelled in three different ways: atomic densities; of a large prepended calculation without embedding transferred densities; bulk-densities (copied). The embedding procedure was tested on the atomic adsorptions of 'Al on Al(100) and Cu on Cu(100). The result was that if the environment is choices appropriately for the Al-system one needs only 9 embedded atoms to reproduce the results of exact slab-calculations. For the Cu-system first calculations without embedding procedures were accomplished, with the result that already 60 atoms are sufficient as a surface-cluster. Using the embedding procedure the same values with only 25 atoms were obtained. This means a substantial improvement if one takes into consideration that the calculation time increased cubically with the number of atoms. With the embedding method Infinite systems can be treated by molecular methods. Additionally the program code was extended by the possibility to make molecular-dynamic simulations. Now it is possible apart from the past calculations of fixed cores to investigate also structures of small clusters and surfaces. A first application we made with the adsorption of Cu on Cu(100). We calculated the relaxed positions of the atoms that were located close to the adsorption site and afterwards made the full-quantummechanical calculation of this system. We did that procedure for different distances to the surface. Thus a realistic adsorption process could be examined for the first time. It should be remarked that when doing the Cu reference-calculations (without embedding) we begun to parallelize the entire program code. Only because of this aspect the investigations for the 100 atomic Cu surface-clusters were possible. Due to the good efficiency of both the parallelization and the developed embedding procedure we will be able to apply the combination in future. This will help to work on more these areas it will be possible to bring in results of full-relativistic molecular calculations, what will be very interesting especially for the regime of heavy systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Während der letzten 20 Jahre hat sich das Periodensystem bis zu den Elementen 114 und 116 erweitert. Diese sind kernphysikalisch nachgewiesen, so dass jetzt die chemische Untersuchung an erster Selle steht. Nachdem sich das Periodensystem bis zum Element 108 so verhält, wie man es dem Periodensystem nach annimmt, wird in dieser Arbeit die Chemie des Elements 112 untersucht. Dabei geht es um die Adsorptionsenergie auf einer Gold-Ober fläche, weil dies der physikalisch/chemische Prozess ist, der bei der Analyse angewandt wird. Die Methode, die in dieser Arbeit angwandt wird, ist die relativistische Dichtefunktionalmethode. Im ersten Teil wird das Vielkörperproblem in allgemeiner Form behandelt, und im zweiten die grundlegenden Eigenschaften und Formulierungen der Dichtefunktionaltheorie. Die Arbeit beschreibt zwei prinzipiell unterschiedliche Ansätze, wie die Adsorptionsenergie berechnet werden kann. Zum einen ist es die sogenannte Clustermethode, bei der ein Atom auf ein relativ kleines Cluster aufgebracht und dessen Adsorptionsenergie berechnet wird. Wenn es gelingt, die Konvergenz mit der Größe des Clusters zu erreichen, sollte dies zu einem Wert für die Adsorptionsenergie führen. Leider zeigt sich in den Rechnungen, dass aufgrund des zeitlichen Aufwandes die Konvergenz für die Clusterrechnungen nicht erreicht wird. Es werden sehr ausführlich die drei verschiedenen Adsorptionsplätze, die Top-, die Brücken- und die Muldenposition, berechnet. Sehr viel mehr Erfolg erzielt man mit der Einbettungsmethode, bei der ein kleiner Cluster von vielen weiteren Atomen an den Positionen, die sie im Festkörpers auf die Adsorptionsenergie soweit sichergestellt ist, dass physikalisch-chemisch gute Ergebnisse erzielt werden. Alle hier gennanten Rechnungen sowohl mit der Cluster- wie mit der Einbettungsmethode verlangen sehr, sehr lange Rechenzeiten, die, wie oben bereits erwähnt, nicht zu einer Konvergenz für die Clusterrechnungen ausreichten. In der Arbeit wird bei allen Rechnungen sehr detailliert auf die Abhängigkeit von den möglichen Basissätzen eingegangen, die ebenfalls in entscheidender Weise zur Länge und Qualität der Rechnungen beitragen. Die auskonvergierten Rechnungen werden in der Form von Potentialkurven, Density of States (DOS), Overlap Populations sowie Partial Crystal Overlap Populations analysiert. Im Ergebnis zeigt sich, dass die Adsoptionsenergie für das Element 112 auf einer Goldoberfläche ca. 0.2 eV niedriger ist als die Adsorption von Quecksilber auf der gleichen Ober fläche. Mit diesem Ergebnis haben die experimentellen Kernchemiker einen Wert an der Hand, mit dem sie eine Anhaltspunkt haben, wo sie bei den Messungen die wenigen zu erwartenden Ereignisse finden können.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.