6 resultados para Crack Formation in Soils
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Computersimulation des Rissinitiierungsprozesses für einen martensitischen Stahl, der der niederzyklischen Ermüdung unterworfen wurde. Wie auf der Probenoberfläche beobachtet wurde, sind die Initiierung und das frühe Wachstum dieser Mikrorisse in hohem Grade von der Mikrostruktur abhängig. Diese Tatsache wurde in mesoskopischen Schädigungsmodellen beschrieben, wobei die Körner als einzelne Kristalle mit anisotropem Materialverhalten modelliert wurden. Das repräsentative Volumenelement (RVE), das durch einen Voronoi-Zerlegung erzeugt wurde, wurde benutzt, um die Mikrostruktur des polykristallinen Materials zu simulieren. Spannungsverteilungen wurden mit Hilfe der Finiten-Elemente-Methode mit elastischen und elastoplastischen Materialeigenschaften analysiert. Dazu wurde die Simulation zunächst an zweidimensionalen Modellen durchgeführt. Ferner wurde ein vereinfachtes dreidimensionales RVE hinsichtlich des sowohl dreidimensionalen Gleitsystems als auch Spannungszustandes verwendet. Die kontinuierliche Rissinitiierung wurde simuliert, indem der Risspfad innerhalb jedes Kornes definiert wurde. Die Zyklenanzahl bis zur Rissinitiierung wurde auf Grundlage der Tanaka-Mura- und Chan-Gleichungen ermittelt. Die Simulation lässt auf die Flächendichten der einsegmentige Risse in Relation zur Zyklenanzahl schließen. Die Resultate wurden mit experimentellen Daten verglichen. Für alle Belastungsdehnungen sind die Simulationsergebnisse mit denen der experimentellen Daten vergleichbar.
Resumo:
An important feature of maintaining the agricultural stability in millennia-old mountain oases of northern Oman is the temporary abandonment of terraces. To analyse the effects of a fallow period on soil microbial performance, i.e. microbial activity and microbial biomass, samples of eight terrace soils abandoned for different periods were collected in situ, assigned to four fallow age classes and incubated for 30 days in the laboratory after rewetting. The younger fallow age classes of 1 and 5 years were based on the records of the farmers’ recollections, the two older fallow age classes of 10–20 and 25–60 years according to the increase in the D -to- L ratio of valine and leucine enantiomers. The increase in these two ratios was in agreement with that of the D -to- L ratio of lysine. The strongest relationship was observed between the increase in the D -to- L ratio of lysine and the decrease in soil microbial biomass C. However, the most stringent coherence between the increase in fallow age and soil properties was revealed by the decreases in cumulative respiration and net N mineralisation rates with decreasing availability of substrate to soil microorganisms. During the 30-day incubation following rewetting, relative changes in microbial activity (respiration and net N mineralisation) and microbial biomass (C and N)indices were similar in the eight terrace soils on a fallow age-class-specific level, indicating that the same basic processes occurred in all of the sandy terrace soils investigated.
Resumo:
Das Ziel dieser Arbeit war, die Einflüsse von Wurzeln und Rhizodeposition auf den Umsatz von Körnerleguminosenresiduen und damit verknüpfte mikrobielle Prozesse zu untersuchen. In einem integrierten Versuch wurden Ackerbohne (Vicia faba L.), Erbse (Pisum sativum L.) und Weiße Lupine (Lupinus albus L.) untersucht. Der Versuch bestand aus drei Teilen, zwei Gefäß-Experimenten und einem Inkubationsexperiment, in denen ausgehend von einem Gefäß-Experiment derselbe Boden und dasselbe Pflanzenmaterial verwendet wurden. In Experiment I wurde die Stickstoff-Rhizodeposition der Körnerleguminosenarten, definiert als wurzelbürtiger N nach dem Entfernen aller sichtbaren Wurzeln im Boden, gemessen und der Verbleib des Rhizodepositions-N in verschiednenen Bodenpools untersucht. Dazu wurden die Leguminosen in einem Gefäßversuch unter Verwendung einer in situ 15N-Docht-Methode mit einer 15N Harnstofflösung pulsmarkiert. In Experiment II wurde der Umsatz der N-Rhizodeposition der Körnerleguminosen und der Einfluss der Rhizodeposition auf den anschließenden C- und N-Umsatz der Körnerleguminosenresiduen in einem Inkubationsexperiment untersucht. In Experiment III wurde der N-Transfer aus den Körnerleguminosenresiduen einschließlich N-Rhizodeposition in die mikrobielle Biomasse und die Folgefrüchte Weizen (Triticum aestivum L.) und Raps (Brassica napus L.) in einem Gewächshaus-Gefäßversuch ermittelt. Die in situ 15N Docht-Markierungs-Methode wies hohe 15N Wiederfindungsraten von ungefähr 84 Prozent für alle drei Leguminosenarten auf und zeigte eine vergleichsweise homogene 15N Verteilung zwischen verschiedenen Pflanzenteilen zur Reife. Die Wurzeln zeigten deutliche Effekte auf die N-Dynamik nach dem Anbau von Körnerleguminosen. Die Effekte konnten auf die N-Rhizodeposition und deren anschließenden Umsatz, Einflüsse der Rhizodeposition von Körnerleguminosen auf den anschließenden Umsatz ihrer Residuen (Stängel, Blätter, erfassbare Wurzeln) und die Wirkungen nachfolgender Nichtleguminosen auf den Umsatzprozess der Residuen zurückgeführt werden: Die N-Rhizodeposition betrug zur Reife der Pflanzen bezogen auf die Gesamt-N- Aufnahme 13 Prozent bei Ackerbohne und Erbse und 16 Prozent bei Weißer Lupine. Bezogen auf den Residual N nach Ernte der Körner erhöhte sich der relative Anteil auf 35 - 44 Prozent. Die N-Rhizodeposition ist daher ein wesentlicher Pool für die N-Bilanz von Körnerleguminosen und trägt wesentlich zur Erklärung positiver Fruchtfolgeeffekte nach Körnerleguminosen bei. 7 - 21 Prozent des Rhizodepositions-N wurden als Feinwurzeln nach Nasssiebung (200 µm) wiedergefunden. Nur 14 - 18 Prozent des Rhizodepositions-N wurde in der mikrobiellen Biomasse und ein sehr kleiner Anteil von 3 - 7 Prozent in der mineralischen N Fraktion gefunden. 48 bis 72 Prozent der N-Rhizodeposition konnte in keinem der untersuchten Pools nachgewiesen werden. Dieser Teil dürfte als mikrobielle Residualmasse immobilisiert worden sein. Nach 168 Tagen Inkubation wurden 21 bis 27 Prozent des Rhizodepositions-N in den mineralisiert. Der mineralisierte N stammte im wesentlichen aus zwei Pools: Zwischen 30 Prozent und 55 Prozent wurde aus der mikrobiellen Residualmasse mineralisiert und eine kleinere Menge stammte aus der mikrobielle Biomasse. Der Einfluss der Rhizodeposition auf den Umsatz der Residuen war indifferent. Durch Rhizodeposition wurde die C Mineralisierung der Leguminosenresiduen nur in der Lupinenvariante erhöht, wobei der mikrobielle N und die Bildung von mikrobieller Residualmasse aus den Leguminosenresiduen in allen Varianten durch Rhizodepositionseinflüsse erhöht waren. Das Potential des residualen Körnerleguminosen-N für die N Ernährung von Folgefrüchten war gering. Nur 8 - 12 Prozent des residualen N wurden in den Folgenfrüchten Weizen und Raps wiedergefunden. Durch die Berücksichtigung des Rhizodepositions-N war der relative Anteil des Residual-N bezogen auf die Gesamt-N-Aufnahme der Folgefrucht hoch und betrug zwischen 18 und 46 Prozent. Dies lässt auf einen höheren N-Beitrag der Körnerleguminosen schließen als bisher angenommen wurde. Die residuale N-Aufnahme von Weizen von der Blüte bis zur Reife wurde durch den Residual-N gespeist, der zur Blüte in der mikrobiellen Biomasse immobilisiert worden war. Die gesamte Poolgröße, Residual-N in der mikrobiellen Biomasse und in Weizen, veränderte sich von der Blüte bis zur Reife nicht. Jedoch konnte ein Rest von 80 Prozent des Residual-N in keinem der untersuchten Pools nachgewiesen werden und dürfte als mikrobielle Residualmasse immobilisiert worden sein oder ist noch nicht abgebaut worden. Die zwei unterschiedlichen Folgefrüchte - Weizen und Raps - zeigten sehr ähnliche Muster bei der N-Aufnahme, der Residual-N Wiederfindung und bei mikrobiellen Parametern für die Residuen der drei Körnerleguminosenarten. Ein differenzierender Effekt auf den Umsatz der Residuen bzw. auf das Residual-N-Aneignungsvermögen der Folgefrüchte konnte nicht beobachtet werden.
Resumo:
The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.
Resumo:
Artisanal columbite-tantalite (coltan) mining has had negative effects on the rural economy in the great Lakes region of Africa through labor deficits, degradation and loss of farmland, food insecurity, high cost of living, and reduced traditional export crop production alongside secondary impacts that remotely affect the quality of air, water, soil, plants, animals, and human wellbeing. The situation is multifaceted and calls for a holistic approach for short and long-term mitigation of such negative effects. This study focuses on the effects of mine land restoration on soil microbiological quality in the Gatumba Mining District of western Rwanda. Some coltan mine wastelands were afforested with pine and eucalyptus trees while farmers directly cultivated others due to land scarcity. Farmyard manure (FYM) is the sole fertilizer applied on the wastelands although it is insufficient to achieve the desired crop yields. Despite this, several multi-purpose plants such as Tithonia diversifolia, Markhamia lutea, and Canavalia brasiliensis thrive in the area and could supplement FYM. The potential for these “new” amendments to improve soil microbial properties, particularly in the tantalite mine soils was investigated. The specific objectives of the study were to: (a) evaluate the effects of land use on soil microbial indices of the tantalite mine soils; (b) investigate the restorative effects of organic amendments on a Technosol; and (c) estimate the short-term N and P supply potential of the soil amendments in the soils. Fresh soils (0-20 cm) from an unmined native forest, two mine sites afforested with pine and eucalyptus forests (pine and eucalyptus Technosols), an arable land, and two cultivated Technosols (Kavumu and Kirengo Technosols) were analyzed for the physicochemical properties. Afterwards, a 28-day incubation (22oC) experiment was conducted followed by measurements of mineral N, soil microbial biomass C, N, P, and fungal ergosterol contents using standard methods. This was followed by a 12-week incubation study of the arable soil and the Kavumu Technosol amended with FYM, Canavalia and Tithonia biomass, and Markhamia leaf litter after which soil microbial properties were measured at 2, 8, and 12 weeks of incubation. Finally, two 4-week incubation experiments each were conducted in soils of the six sites to estimate (i) potential mineralizable N using a soil-sand mixture (1:1) amended with Canavalia and goat manure and (ii) P mineralization mixtures (1:1) of soil and anion exchange resins in bicarbonate form amended with Tithonia biomass and goat manure. In study one, afforestation increased soil organic carbon and total N contents in the pine and eucalyptus Technosols by 34-40% and 28-30%, respectively of that in the native forest soil. Consequently, the microbial biomass and activity followed a similar trend where the cultivated Technosols were inferior to the afforested ones. The microbial indices of the mine soils were constrained by soil acidity, dithionite-extractable Al, and low P availability. In study two, the amendments substantially increased C and N mineralization, microbial properties compared with non-amended soils. Canavalia biomass increased CO2 efflux by 340%, net N mineralization by 30-140%, and microbial biomass C and N by 240-600% and 240-380% (P < 0.01), respectively after four weeks of incubation compared with the non-amended soils. Tithonia biomass increased ergosterol content by roughly 240%. The Kavumu Technosol showed a high potential for quick restoration of its soil quality due to its major responses to the measured biological parameters. In study three, Canavalia biomass gave the highest mineralizable N (130 µg g-1 soil, P < 0.01) in the Kavumu Technosol and the lowest in the native forest soil (-20 µg g-1 soil). Conversely, the mineralizable N of goat manure was negative in all soils ranging from -2.5 µg N g-1 to -7.7 µg N g-1 soil except the native forest soil. However, the immobilization of goat manure N in the “cultivated soils” was 30-70% lower than in the “forest soils” signifying an imminent recovery of the amended soils from N immobilization. The mineralization of goat manure P was three-fold that of Tithonia, constituting 61-71% of total P applied. Phosphorus mineralization slightly decreased after four weeks of incubation due to sulfate competition as reflected in a negative correlation, which was steeper in the Tithonia treatment. In conclusion, each amendment used in this research played a unique role in C, N, and P mineralization and contributed substantially to microbial properties in the tantalite mine soils. Interestingly, the “N immobilizers” exhibited potentials for P release and soil organic carbon storage. Consequently, the combined use of the amendments in specific ratios, or co-composting prior to application is recommended to optimize nutrient release, microbial biomass dynamics and soil organic matter accrual. Transport of organic inputs seems more feasible for smallholder farmers who typically manage small field sizes. To reduce acidity in the soils, liming with wood ash was recommended to also improve P availability and enhance soil biological quality, even if it may only be possible on small areas. Further, afforestation with mixed-species of fast-growing eucalyptus and legume or indigenous tree species are suggested to restore tantalite mine wastelands. It is emphasized most of this research was conducted under controlled laboratory conditions, which exclude interaction with environmental variables. Also fine fractions of the amendments were used compared with the usual practice of applying a mixture of predominantly coarser fractions. Therefore, the biological dynamics reported in the studies here may not entirely reflect those of farmers’ field conditions.