20 resultados para Concept Map
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Im Mittelpunkt der Dissertation stehen das Schutzgut ‚Landschaft’ sowie ‚Prognosemethoden in der Umweltprüfung’. Mit beiden Themenbereichen verbinden sich bereits heute ungelöste methodische Probleme, die mit der Umsetzung der Richtlinie zur Strategischen Umweltprüfung (SUP) zusätzlich komplexer und deren Lösung mithin anspruchsvoller werden. Dies hängt einerseits damit zusammen, dass eine gesetzeskonforme Gleichbehandlung aller Schutzgüter zunehmend eingefordert wird und gerade das Schutzgut ‚Landschaft’ in einer SUP methodisch besondere Aufmerksamkeit verlangt. Zum anderen führt die gängige planungsmethodische Diskussion allein nicht zu geeigneten Antworten auf o.g. Fragen, und es bedarf der Prüfung verschiedener Methodenbausteine, auch aus anderen Wissensgebieten, um – über ein eindimensionales Landschaftsverständnis einerseits und die bisher bekannten linearen Wirkungsprognosen andererseits hinaus gehend – mehrfach verknüpfte Prognoseschritte zur Anwendung in der SUP zu entwickeln, in denen das Schutzgut ‚Landschaft’ modellhaft für Bewertungsschritte nachvollziehbar abgebildet wird. Hierbei müssen entscheidungsrelevante Prognosezeiträume ebenso beachtet werden, wie in diesen Zeiträumen möglicherweise auftretende sekundäre, kumulative, synergetische, positive und negative Auswirkungen der zu beurteilenden Planung. Dieser Ziel- und Aufgabenstellung entsprechend erfolgt die theoretische Herangehensweise der Arbeit von zwei Seiten: 1. Die Funktionen und Stellung von Prognosen innerhalb der SUP wird erläutert (Kap. 2), und es wird der Frage nachgegangen, welche Anforderungen an Prognosemethoden zu stellen sind (Kap. 2.4) und welche Prognosemethoden in der SUP Verwendung finden bzw. finden können (Kap. 3). Der Schwerpunkt wird dabei auf die Anwendung der Szenariotechnik gelegt. 2. Es wird dargestellt wie Landschaft für Aufgaben der Landschaftsplanung und Umweltprüfung bisher üblicherweise erfasst und analysiert wird, um in Prognoseschritten handhabbar behandelt zu werden (Kap. 4). Beide Zugänge werden sodann zusammengeführt (Kap. 5), um am Beispiel einer Hochwasserschutzkonzeption im Rahmen der SUP Landschaftliche Prognosen zu erarbeiten. Die Prognose setzt methodisch mit der Beschreibung des zu verwendenden Landschaftsmodells und der Klärung des Modellzwecks ein. Bezugsbasis ist die Beschreibung des Charakters einzelner logisch hergeleiteter Landschaftseinheiten bzw. Landschaftsräume, die typisiert werden. Die Prognose selber unterscheidet zwischen der Abschätzung zu erwartender Landschaftsveränderungen im Sinne der ‚Status-quo-Prognose’ (einschließlich der Entwicklung von drei Szenarien möglicher Zukunftslandschaften bis 2030) und der Wirkungsabschätzungen verschiedener Maßnahmen bzw. Planungsalternativen und zwar zunächst raumunabhängig, und dann raumkonkret. Besondere Bedeutung bei den Wirkungsabschätzungen erhält die klare Trennung von Sach- und Wertebene, eine angemessene Visualisierung und die Dokumentation von Informationslücken und Unsicherheiten bei der Prognose. Diskutiert wird u.a. (Kap. 6) · die Bildung und Abgrenzung landschaftlicher Einheiten und Typen in Bezug zu der Aufgabe, landschaftliche Eigenart zu definieren und planerisch handhabbar und anwendbar zu bestimmen, · die Bedeutung angemessener Visualisierung zur Unterstützung von Beteiligungsverfahren und · die Bestimmung des so genannten ‚Raumwiderstandes’. Beigefügt sind zwei Karten des gesamten Bearbeitungsgebietes: Karte 1 „Landschaftstypen“, Karte 2 „Maßnahmentypen des Hochwasserschutzes mit möglichen Synergieeffekten für die Landschaft“.
Resumo:
Concept lattices are used in formal concept analysis to represent data conceptually so that the original data are still recognizable. Their line diagrams should reflect the semantical relationships within the data. Up to now, no satisfactory automatic drawing programs for this task exist. The geometrical heuristic is the most successful tool for drawing concept lattices manually. It ueses a geometric representation as intermediate step between the list of upper covers and the line diagram of the lattice.
Resumo:
The development of conceptual knowledge systems specifically requests knowledge acquisition tools within the framework of formal concept analysis. In this paper, the existing tools are presented, and furhter developments are discussed.
Resumo:
Concept exploration is a knowledge acquisition tool for interactively exploring the hierarchical structure of finitely generated lattices. Applications comprise the support of knowledge engineers by constructing a type lattice for conceptual graphs, and the exploration of large formal contexts in formal concept analysis.
Resumo:
Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a unified knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas of association rules for reducing the complexity of the visualization of Conceptual Information Systems.
Resumo:
Conceptual Graphs and Formal Concept Analysis have in common basic concerns: the focus on conceptual structures, the use of diagrams for supporting communication, the orientation by Peirce's Pragmatism, and the aim of representing and processing knowledge. These concerns open rich possibilities of interplay and integration. We discuss the philosophical foundations of both disciplines, and analyze their specific qualities. Based on this analysis, we discuss some possible approaches of interplay and integration.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
Association rules are used to investigate large databases. The analyst is usually confronted with large lists of such rules and has to find the most relevant ones for his purpose. Based on results about knowledge representation within the theoretical framework of Formal Concept Analysis, we present relatively small bases for association rules from which all rules can be deduced. We also provide algorithms for their calculation.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.
Resumo:
Ontologies have been established for knowledge sharing and are widely used as a means for conceptually structuring domains of interest. With the growing usage of ontologies, the problem of overlapping knowledge in a common domain becomes critical. In this short paper, we address two methods for merging ontologies based on Formal Concept Analysis: FCA-Merge and ONTEX. --- FCA-Merge is a method for merging ontologies following a bottom-up approach which offers a structural description of the merging process. The method is guided by application-specific instances of the given source ontologies. We apply techniques from natural language processing and formal concept analysis to derive a lattice of concepts as a structural result of FCA-Merge. The generated result is then explored and transformed into the merged ontology with human interaction. --- ONTEX is a method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down- knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.