4 resultados para Computer-Aided Engineering (CAD, CAE) and design
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Excimerlaser sind gepulste Gaslaser, die Laseremission in Form von Linienstrahlung – abhängig von der Gasmischung – im UV erzeugen. Der erste entladungsgepumpte Excimerlaser wurde 1977 von Ischenko demonstriert. Alle kommerziell verfügbaren Excimerlaser sind entladungsgepumpte Systeme. Um eine Inversion der Besetzungsdichte zu erhalten, die notwendig ist, um den Laser zum Anschwingen zu bekommen, muss aufgrund der kurzen Wellenlänge sehr stark gepumpt werden. Diese Pumpleistung muss von einem Impulsleistungsmodul erzeugt werden. Als Schaltelement gebräuchlich sind Thyratrons, Niederdruckschaltröhren, deren Lebensdauer jedoch sehr limitiert ist. Deshalb haben sich seit Mitte der 1990iger Jahre Halbleiterschalter mit Pulskompressionsstufen auch in dieser Anwendung mehr und mehr durchgesetzt. In dieser Arbeit wird versucht, die Pulskompression durch einen direkt schaltenden Halbleiterstapel zu ersetzen und dadurch die Verluste zu reduzieren sowie den Aufwand für diese Pulskompression einzusparen. Zudem kann auch die maximal mögliche Repetitionsrate erhöht werden. Um die Belastung der Bauelemente zu berechnen, wurden für alle Komponenten möglichst einfache, aber leistungsfähige Modelle entwickelt. Da die normalerweise verfügbaren Daten der Bauelemente sich aber auf andere Applikationen beziehen, mussten für alle Bauteile grundlegende Messungen im Zeitbereich der späteren Applikation gemacht werden. Für die nichtlinearen Induktivitäten wurde ein einfaches Testverfahren entwickelt um die Verluste bei sehr hohen Magnetisierungsgeschwindigkeiten zu bestimmen. Diese Messungen sind die Grundlagen für das Modell, das im Wesentlichen eine stromabhängige Induktivität beschreibt. Dieses Modell wurde für den „magnetic assist“ benützt, der die Einschaltverluste in den Halbleitern reduziert. Die Impulskondensatoren wurden ebenfalls mit einem in der Arbeit entwickelten Verfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass die sehr gebräuchlichen Class II Keramikkondensatoren für diese Anwendung nicht geeignet sind. In der Arbeit wurden deshalb Class I Hochspannungs- Vielschicht- Kondensatoren als Speicherbank verwendet, die ein deutlich besseres Verhalten zeigen. Die eingesetzten Halbleiterelemente wurden ebenfalls in einem Testverfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass nur moderne Leistungs-MOSFET´s für diesen Einsatz geeignet sind. Bei den Dioden ergab sich, dass nur Siliziumkarbid (SiC) Schottky Dioden für die Applikation einsetzbar sind. Für die Anwendung sind prinzipiell verschiedene Topologien möglich. Bei näherer Betrachtung zeigt sich jedoch, dass nur die C-C Transfer Anordnung die gewünschten Ergebnisse liefern kann. Diese Topologie wurde realisiert. Sie besteht im Wesentlichen aus einer Speicherbank, die vom Netzteil aufgeladen wird. Aus dieser wird dann die Energie in den Laserkopf über den Schalter transferiert. Aufgrund der hohen Spannungen und Ströme müssen 24 Schaltelemente in Serie und je 4 parallel geschaltet werden. Die Ansteuerung der Schalter wird über hochisolierende „Gate“-Transformatoren erreicht. Es zeigte sich, dass eine sorgfältig ausgelegte dynamische und statische Spannungsteilung für einen sicheren Betrieb notwendig ist. In der Arbeit konnte ein Betrieb mit realer Laserkammer als Last bis 6 kHz realisiert werden, der nur durch die maximal mögliche Repetitionsrate der Laserkammer begrenzt war.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
Diese Arbeit umfaßt das elektromechanische Design und die Designoptimierung von weit durchstimmbaren optischen multimembranbasierten Bauelementen, mit vertikal orientierten Kavitäten, basierend auf der Finiten Element Methode (FEM). Ein multimembran InP/Luft Fabry-Pérot optischer Filter wird dargestellt und umfassend analysiert. In dieser Arbeit wird ein systematisches strukturelles Designverfahren dargestellt. Genaue analytische elektromechanischer Modelle für die Bauelemente sind abgeleitet worden. Diese können unschätzbare Werkzeuge sein, um am Anfang der Designphase schnell einen klaren Einblick zur Verfügung zu stellen. Mittels des FEM Programms ist der durch die nicht-lineare Verspannung hervorgerufene versteifende Effekt nachgeforscht und sein Effekt auf die Verlängerung der mechanischen Durchstimmungsstrecke der Bauelemente demonstriert worden. Interessant war auch die Beobachtung, dass die normierte Relation zwischen Ablenkung und Spannung ein unveränderliches Profil hat. Die Deformation der Membranflächen der in dieser Arbeit dargestellten Bauelementformen erwies sich als ein unerwünschter, jedoch manchmal unvermeidbarer Effekt. Es zeigt sich aber, dass die Wahl der Größe der strukturellen Dimensionen den Grad der Membrandeformation im Falle der Aktuation beeinflusst. Diese Arbeit stellt ein elektromechanisches in FEMLAB implementierte quasi-3D Modell, das allgemein für die Modellierung dünner Strukturen angewendet werden kann, dar; und zwar indem man diese als 2D-Objekte betrachtet und die dritte Dimension als eine konstante Größe (z.B. die Schichtdicke) oder eine Größe, welche eine mathematische Funktion ist, annimmt. Diese Annahme verringert drastisch die Berechnungszeit sowie den erforderlichen Arbeitsspeicherbedarf. Weiter ist es für die Nachforschung des Effekts der Skalierung der durchstimmbaren Bauelemente verwendet worden. Eine neuartige Skalierungstechnik wurde abgeleitet und verwendet. Die Ergebnisse belegen, dass das daraus resultierende, skalierte Bauelement fast genau die gleiche mechanische Durchstimmung wie das unskalierte zeigt. Die Einbeziehung des Einflusses von axialen Verspannungen und Gradientenverspannungen in die Berechnungen erforderte die Änderung der Standardimplementierung des 3D Mechanikberechnungsmodus, der mit der benutzten FEM Software geliefert wurde. Die Ergebnisse dieser Studie zeigen einen großen Einfluss der Verspannung auf die Durchstimmungseigenschaften der untersuchten Bauelemente. Ferner stimmten die Ergebnisse der theoretischen Modellrechnung mit den experimentellen Resultaten sehr gut überein.