6 resultados para Computer network protocols.

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic programming is known to provide good solutions for many problems like the evolution of network protocols and distributed algorithms. In such cases it is most likely a hardwired module of a design framework that assists the engineer to optimize specific aspects of the system to be developed. It provides its results in a fixed format through an internal interface. In this paper we show how the utility of genetic programming can be increased remarkably by isolating it as a component and integrating it into the model-driven software development process. Our genetic programming framework produces XMI-encoded UML models that can easily be loaded into widely available modeling tools which in turn posses code generation as well as additional analysis and test capabilities. We use the evolution of a distributed election algorithm as an example to illustrate how genetic programming can be combined with model-driven development. This example clearly illustrates the advantages of our approach – the generation of source code in different programming languages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social resource sharing systems like YouTube and del.icio.us have acquired a large number of users within the last few years. They provide rich resources for data analysis, information retrieval, and knowledge discovery applications. A first step towards this end is to gain better insights into content and structure of these systems. In this paper, we will analyse the main network characteristics of two of the systems. We consider their underlying data structures – socalled folksonomies – as tri-partite hypergraphs, and adapt classical network measures like characteristic path length and clustering coefficient to them. Subsequently, we introduce a network of tag co-occurrence and investigate some of its statistical properties, focusing on correlations in node connectivity and pointing out features that reflect emergent semantics within the folksonomy. We show that simple statistical indicators unambiguously spot non-social behavior such as spam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social resource sharing systems like YouTube and del.icio.us have acquired a large number of users within the last few years. They provide rich resources for data analysis, information retrieval, and knowledge discovery applications. A first step towards this end is to gain better insights into content and structure of these systems. In this paper, we will analyse the main network characteristics of two of these systems. We consider their underlying data structures – so-called folksonomies – as tri-partite hypergraphs, and adapt classical network measures like characteristic path length and clustering coefficient to them. Subsequently, we introduce a network of tag cooccurrence and investigate some of its statistical properties, focusing on correlations in node connectivity and pointing out features that reflect emergent semantics within the folksonomy. We show that simple statistical indicators unambiguously spot non-social behavior such as spam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, beside consistency checking, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as (labeled, directed) graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures in general currently receive high attention in the Semantic Web community, there are only very few SNA applications up to now, and virtually none for analyzing the structure of ontologies. We illustrate in this paper the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality based on Hermitian matrices, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.