5 resultados para Complete Characteristic Operator-Function
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.
Resumo:
A femtosecond-laser pulse can induce ultrafast nonthermal melting of various materials along pathways that are inaccessible under thermodynamic conditions, but it is not known whether there is any structural modification at fluences just below the melting threshold. Here, we show for silicon that in this regime the room-temperature phonons become thermally squeezed, which is a process that has not been reported before in this material. We find that the origin of this effect is the sudden femtosecond-laser-induced softening of interatomic bonds, which can also be described in terms of a modification of the potential energy surface. We further find in ab initio molecular-dynamics simulations on laser-excited potential energy surfaces that the atoms move in the same directions during the first stages of nonthermal melting and thermal phonon squeezing. Our results demonstrate how femtosecond-laser-induced coherent fluctuations precurse complete atomic disordering as a function of fluence. The common underlying bond-softening mechanism indicates that this relation between thermal squeezing and nonthermal melting is not material specific.
Resumo:
A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied. Many problems related to special functions which can be described by such ideals can be solved by performing elimination of appropriate noncommutative variables in these ideals. In this work, we mainly achieve the following: 1. We give an overview of the theoretical algebraic background as well as the algorithmic aspects of different methods using noncommutative Gröbner elimination techniques in Ore algebras in order to solve problems related to special functions. 2. We describe in detail algorithms which are based on Gröbner elimination techniques and perform the creative telescoping method for sums and integrals of special functions. 3. We investigate and compare these algorithms by illustrative examples which are performed by the computer algebra system Maple. This investigation has the objective to test how far noncommutative Gröbner elimination techniques may be efficiently applied to perform creative telescoping.
Resumo:
The three articles constituting this thesis are for reasons of content or method related to the following three fields in economics: Behavioral Economics, Evolutionary Game Theory and Formal Institutional Economics. A core element of these fields is the concept of individual preferences. Preferences are of central importance for the conceptional framework to analyze human behavior. They form the foundation for the theory of rational choice which is defined by the determination of the choice set and the selection of the most preferred alternative according to some consistency requirements. The theory of rational choice is based on a very simplified description of the problem of choice (object function and constraints). However, that choices depend on many more factors is for instance propagated by psychological theories and is supported by many empirical and experimental studies. This thesis adds to a better understanding of individual behavior to the extent that the evolution of certain characteristics of preferences and their consequences on human behavior forms the overarching theme of the dissertation. The long-term effect of evolutionary forces on a particular characteristic of importance in the theoretical, empirical and experimental economic literature, the concept of inequality aversion, is subject of the article “The evolution of inequality aversion in a simplified game of life” (Chapter 4). The contribution of the article is the overcoming of a restriction of former approaches to analyze the evolution of preferences in very simple environments. By classifying human interaction into three central economic games, the article provides a first step towards a simplified and sufficiently complete description of the interaction environment. Within such an environment the article characterizes the evolutionary stable preference distribution. One result shows, that the interaction of the aforementioned three classes can stabilize a preference of inequality aversion in the subpopulation which is favored in the problem of redistribution. The two remaining articles are concerned with social norms, which dissemination is determined by medium-run forces of cultural evolution. The article “The impact of market innovations on the evolution of social norms: the sustainability case.“ (Chapter 2) studies the interrelation between product innovations which are relevant from a sustainability perspective and an according social norm in consumption. This relation is based on a conformity bias in consumption and the attempt to avoid cognitive dissonances resulting from non-compliant consumption. Among others, it is shown that a conformity bias on the consumption side can lead to multiple equilibria on the side of norm adoption. The article “Evolution of cooperation in social dilemmas: signaling internalized norms.” (Chapter 3) studies the emergence of cooperation in social dilemmas based on the signaling of social norms. The article provides a potential explanation of cooperative behavior, which does not rely on the assumption of structured populations or on the unmotivated ability of social norms to restrict individual actions or strategy spaces. A comprehensive result of the single articles is the explanation of the phenomenon of partial norm adaption or dissemination of preferences. The plurality of the applied approaches with respect to the proximity to the rational choice approach and regarding the underlying evolutionary mechanics is a particular strength of the thesis. It shows the equality of these approaches in their potential to explain the phenomenon of cooperation in environments that provide material incentives for defective behavior. This also points to the need of a unified framework considering the biological and cultural coevolution of preference patterns.
Resumo:
Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.