3 resultados para Compact metric spaces
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The aim of this paper is the investigation of the error which results from the method of approximate approximations applied to functions defined on compact in- tervals, only. This method, which is based on an approximate partition of unity, was introduced by V. Mazya in 1991 and has mainly been used for functions defied on the whole space up to now. For the treatment of differential equations and boundary integral equations, however, an efficient approximation procedure on compact intervals is needed. In the present paper we apply the method of approximate approximations to functions which are defined on compact intervals. In contrast to the whole space case here a truncation error has to be controlled in addition. For the resulting total error pointwise estimates and L1-estimates are given, where all the constants are determined explicitly.
Resumo:
Using the case of an economically declined neighbourhood in the post-industrial German Ruhr Area (sometimes characterized as Germany’s “Rust Belt”), we analyse, describe and conclude how urban agriculture can be used as a catalyst to stimulate and support urban renewal and regeneration, especially from a socio-cultural perspective. Using the methodological framework of participatory action research, and linking bottom-up and top-down planning approaches, a project path was developed to include the population affected and foster individual responsibility for their district, as well as to strengthen inhabitants and stakeholder groups in a permanent collective stewardship for the individual forms of urban agriculture developed and implemented. On a more abstract level, the research carried out can be characterized as a form of action research with an intended transgression of the boundaries between research, planning, design, and implementation. We conclude that by synchronously combining those four domains with intense feedback loops, synergies for the academic knowledge on the potential performance of urban agriculture in terms of sustainable development, as well as the benefits for the case-study area and the interests of individual urban gardeners can be achieved.
Resumo:
Time-resolved diffraction with femtosecond electron pulses has become a promising technique to directly provide insights into photo induced primary dynamics at the atomic level in molecules and solids. Ultrashort pulse duration as well as extensive spatial coherence are desired, however, space charge effects complicate the bunching of multiple electrons in a single pulse.Weexperimentally investigate the interplay between spatial and temporal aspects of resolution limits in ultrafast electron diffraction (UED) on our highly compact transmission electron diffractometer. To that end, the initial source size and charge density of electron bunches are systematically manipulated and the resulting bunch properties at the sample position are fully characterized in terms of lateral coherence, temporal width and diffracted intensity.Weobtain a so far not reported measured overall temporal resolution of 130 fs (full width at half maximum) corresponding to 60 fs (root mean square) and transversal coherence lengths up to 20 nm. Instrumental impacts on the effective signal yield in diffraction and electron pulse brightness are discussed as well. The performance of our compactUEDsetup at selected electron pulse conditions is finally demonstrated in a time-resolved study of lattice heating in multilayer graphene after optical excitation.