4 resultados para Commercial cuts
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The aim of the present thesis was to identify management factors that affect the extent of exploratory behaviour (ground pecking, scratching) as well as quantitative and qualitative as-pects of dust-bathing behaviour in laying hens kept in commercial furnished cages (‘small group housing’) and aviaries. Based on the results, it should be considered which management measures can be recommended for farmers to enhance hen welfare. The feasibility of direct observations of dust-bathing behaviour as well as video observations of exploratory and dust-bathing behaviour was tested in two aviaries. The direct observations were judged to be unfeasible under the conditions encountered. For the analysis of the video recordings, different sampling intervals for instantaneous scan sampling, different extents of observation time, and intra- and inter-observer reliabilities were compared and the most ap-propriate observation scheme selected. Applying the selected scheme (observing the first 16 minutes of every hour distributed over two consecutive light days with a sample interval of two minutes), within the range of environmental conditions found in 22 aviaries, pecking, scratching and dust-bathing behaviour was performed on average 25, 2 and 7 % of the obser-vation time. Hen numbers in the litter were positively associated with stocking density and group size. More scratching was performed with increasing litter height as well as in humid litter. If no litter had been provided, thus substrate consisted of dust and faeces, a reduced proportion of dust-bathing was found. The same method was then used in 16 furnished cage systems. On average 12 % of the total hen number were found on the scratching mats. The hens spent 8 % of the observed time pecking at the mat, 4 % dust-bathing and 0.4 % scratch-ing. Higher proportions were found on the mats and more dust-bathing behaviour occurred, if substrate was provided. Also with increasing light intensity and stocking density more hens were observed on the mats. More pecking and scratching occurred in conditions of higher stocking density, probably due to social facilitation, and of increased mat area per hen. With increasing mat numbers per cage less pecking was observed. Wider mats led to increased dust-bathing behaviour. Finally, 129 dust-baths recorded in 17 aviaries were analysed in detail. On average they lasted 17 minutes, with the tossing phase taking 69 % of this time, including on average 2 vertical wing shakes and 3 scratches with one leg per minute tossing phase. Dust-bath duration de-creased with increasing litter height. Litter type influenced all recorded parameters: dust-bath duration was highest on straw and lowest on fine material and fine material mixed with straw, where on both also the proportion of the tossing phase was lowest. The number of vertical wing shakes during the dust-bath was highest on straw and lowest on fine material mixed with straw as against the frequency of vertical wing shaking that was lowest on straw and highest on fine material. If dust-bathing hens were disturbed twice or more, dust-bathing duration decreased. With increasing light intensity a decreased proportion of the tossing phase as well as a reduced number of vertical wing shakes were recorded. Possibly the light stimulated the hens to dust-bath more often with less tossing behaviour per performance. The observed variation of the dust-bathing parameters could reflect successful adaptation or frustration of the hens. The litter and light conditions on the investigated farms were predominantly restrictive in terms of stimulation of exploration and dust-bathing behaviour. Thus, it was only possible to analyse possible associations between these factors and exploration and dust-bathing behav-iour within the range found. Based on the results the following management recommendations can be given: To allow hens in furnished cages more normal activity, substrate availability should be improved and mat space and light intensity increased. With regard to aviaries as well litter availability should be improved. Litter height should not be too low. Disturbances during dust-bathing should be prevented, but no influencing factors could be identified.
Resumo:
Summary - Cooking banana is one of the most important crops in Uganda; it is a staple food and source of household income in rural areas. The most common cooking banana is locally called matooke, a Musa sp triploid acuminate genome group (AAA-EAHB). It is perishable and traded in fresh form leading to very high postharvest losses (22-45%). This is attributed to: non-uniform level of harvest maturity, poor handling, bulk transportation and lack of value addition/processing technologies, which are currently the main challenges for trade and export, and diversified utilization of matooke. Drying is one of the oldest technologies employed in processing of agricultural produce. A lot of research has been carried out on drying of fruits and vegetables, but little information is available on matooke. Drying of matooke and milling it to flour extends its shelf-life is an important means to overcome the above challenges. Raw matooke flour is a generic flour developed to improve shelf stability of the fruit and to find alternative uses. It is rich in starch (80 - 85%db) and subsequently has a high potential as a calorie resource base. It possesses good properties for both food and non-food industrial use. Some effort has been done to commercialize the processing of matooke but there is still limited information on its processing into flour. It was imperative to carry out an in-depth study to bridge the following gaps: lack of accurate information on the maturity window within which matooke for processing into flour can be harvested leading to non-uniform quality of matooke flour; there is no information on moisture sorption isotherm for matooke from which the minimum equilibrium moisture content in relation to temperature and relative humidity is obtainable, below which the dry matooke would be microbiologically shelf-stable; and lack of information on drying behavior of matooke and standardized processing parameters for matooke in relation to physicochemical properties of the flour. The main objective of the study was to establish the optimum harvest maturity window and optimize the processing parameters for obtaining standardized microbiologically shelf-stable matooke flour with good starch quality attributes. This research was designed to: i) establish the optimum maturity harvest window within which matooke can be harvested to produce a consistent quality of matooke flour, ii) establish the sorption isotherms for matooke, iii) establish the effect of process parameters on drying characteristics of matooke, iv) optimize the drying process parameters for matooke, v) validate the models of maturity and optimum process parameters and vi) standardize process parameters for commercial processing of matooke. Samples were obtained from a banana plantation at Presidential Initiative on Banana Industrial Development (PIBID), Technology Business Incubation Center (TBI) at Nyaruzunga – Bushenyi in Western Uganda. A completely randomized design (CRD) was employed in selecting the banana stools from which samples for the experiments were picked. The cultivar Mbwazirume which is soft cooking and commonly grown in Bushenyi was selected for the study. The static gravitation method recommended by COST 90 Project (Wolf et al., 1985), was used for determination of moisture sorption isotherms. A research dryer developed for this research. All experiments were carried out in laboratories at TBI. The physiological maturity of matooke cv. mbwazirume at Bushenyi is 21 weeks. The optimum harvest maturity window for commercial processing of matooke flour (Raw Tooke Flour - RTF) at Bushenyi is between 15-21 weeks. The finger weight model is recommended for farmers to estimate harvest maturity for matooke and the combined model of finger weight and pulp peel ratio is recommended for commercial processors. Matooke isotherms exhibited type II curve behavior which is characteristic of foodstuffs. The GAB model best described all the adsorption and desorption moisture isotherms. For commercial processing of matooke, in order to obtain a microbiologically shelf-stable dry product. It is recommended to dry it to moisture content below or equal to 10% (wb). The hysteresis phenomenon was exhibited by the moisture sorption isotherms for matooke. The isoteric heat of sorption for both adsorptions and desorption isotherms increased with decreased moisture content. The total isosteric heat of sorption for matooke: adsorption isotherm ranged from 4,586 – 2,386 kJ/kg and desorption isotherm from 18,194– 2,391 kJ/kg for equilibrium moisture content from 0.3 – 0.01 (db) respectively. The minimum energy required for drying matooke from 80 – 10% (wb) is 8,124 kJ/kg of water removed. Implying that the minimum energy required for drying of 1 kg of fresh matooke from 80 - 10% (wb) is 5,793 kJ. The drying of matooke takes place in three steps: the warm-up and the two falling rate periods. The drying rate constant for all processing parameters ranged from 5,793 kJ and effective diffusivity ranged from 1.5E-10 - 8.27E-10 m2/s. The activation energy (Ea) for matooke was 16.3kJ/mol (1,605 kJ/kg). Comparing the activation energy (Ea) with the net isosteric heat of sorption for desorption isotherm (qst) (1,297.62) at 0.1 (kg water/kg dry matter), indicated that Ea was higher than qst suggesting that moisture molecules travel in liquid form in matooke slices. The total color difference (ΔE*) between the fresh and dry samples, was lowest for effect of thickness of 7 mm, followed by air velocity of 6 m/s, and then drying air temperature at 70˚C. The drying system controlled by set surface product temperature, reduced the drying time by 50% compared to that of a drying system controlled by set air drying temperature. The processing parameters did not have a significant effect on physicochemical and quality attributes, suggesting that any drying air temperature can be used in the initial stages of drying as long as the product temperature does not exceed gelatinization temperature of matooke (72˚C). The optimum processing parameters for single-layer drying of matooke are: thickness = 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode. From practical point of view it is recommended that for commercial processing of matooke, to employ multi-layer drying of loading capacity equal or less than 7 kg/m², thickness 3 mm, air temperatures 70˚C, dew point temperature 18˚C and air velocity 6 m/s overflow mode.
Resumo:
There are several factors that affect piglet survival and this has a bearing on sow productivity. Ten variables that influence pre-weaning vitality were analysed using records from the Pig Industry Board, Zimbabwe. These included individual piglet birth weight, piglet origin (nursed in original litter or fostered), sex, relative birth weight expressed as standard deviation units, sow parity, total number of piglets born, year and month of farrowing, within-litter variability and the presence of stillborn or mummified littermates. The main factors that influenced piglet mortality were fostering, parity and within-litter variability especially the weight of the individual piglet relative to the average of the litter (P<0.05). Presence of a mummified or stillborn littermate, which could be a proxy for unfavourable uterine environment or trauma during the birth process, did not influence pre-weaning mortality. Variability within a litter and the deviation of the weight of an individual piglet from the litter mean, influenced survival to weaning. It is, therefore, advisable for breeders to include uniformity within the litter as a selection criterion. The recording of various variables by farmers seems to be a useful management practice to identify piglets at risk so as to establish palliative measures. Further, farmers should know which litters and which piglets within a litter are at risk and require more attention.
Resumo:
The aim of this paper is to emphasize the capacity and resilience of rural communities in regard to sustainable food security by adopting innovative approaches to irrigation. The shift from subsistence to commercial agriculture is promoted as a means to sustainable development. An analysis of the efficacy of irrigation schemes in Zimbabwe suggests that, in terms of providing sustainable agricultural production, they have neither been cost-effective nor have they provided long-term food security to their beneficiaries. This is certainly true of Shashe Scheme and most others in Beitbridge District. The Shashe Irrigation Scheme project represents a bold attempt at developing a fresh approach to the management of communal land irrigation schemes through a Private Public Community Partnership. The model illustrated represents a paradigm shift from subsistence agriculture to a system based on new technologies, market linkages and community ownership that build resilience and lead to sustainable food security and economic prosperity.