5 resultados para Cointegration analysis with structural breaks
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Using the case of an economically declined neighbourhood in the post-industrial German Ruhr Area (sometimes characterized as Germany’s “Rust Belt”), we analyse, describe and conclude how urban agriculture can be used as a catalyst to stimulate and support urban renewal and regeneration, especially from a socio-cultural perspective. Using the methodological framework of participatory action research, and linking bottom-up and top-down planning approaches, a project path was developed to include the population affected and foster individual responsibility for their district, as well as to strengthen inhabitants and stakeholder groups in a permanent collective stewardship for the individual forms of urban agriculture developed and implemented. On a more abstract level, the research carried out can be characterized as a form of action research with an intended transgression of the boundaries between research, planning, design, and implementation. We conclude that by synchronously combining those four domains with intense feedback loops, synergies for the academic knowledge on the potential performance of urban agriculture in terms of sustainable development, as well as the benefits for the case-study area and the interests of individual urban gardeners can be achieved.
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
To study the behaviour of beam-to-column composite connection more sophisticated finite element models is required, since component model has some severe limitations. In this research a generic finite element model for composite beam-to-column joint with welded connections is developed using current state of the art local modelling. Applying mechanically consistent scaling method, it can provide the constitutive relationship for a plane rectangular macro element with beam-type boundaries. Then, this defined macro element, which preserves local behaviour and allows for the transfer of five independent states between local and global models, can be implemented in high-accuracy frame analysis with the possibility of limit state checks. In order that macro element for scaling method can be used in practical manner, a generic geometry program as a new idea proposed in this study is also developed for this finite element model. With generic programming a set of global geometric variables can be input to generate a specific instance of the connection without much effort. The proposed finite element model generated by this generic programming is validated against testing results from University of Kaiserslautern. Finally, two illustrative examples for applying this macro element approach are presented. In the first example how to obtain the constitutive relationships of macro element is demonstrated. With certain assumptions for typical composite frame the constitutive relationships can be represented by bilinear laws for the macro bending and shear states that are then coupled by a two-dimensional surface law with yield and failure surfaces. In second example a scaling concept that combines sophisticated local models with a frame analysis using a macro element approach is presented as a practical application of this numerical model.
Resumo:
This study investigated the relationship between higher education and the requirement of the world of work with an emphasis on the effect of problem-based learning (PBL) on graduates' competencies. The implementation of full PBL method is costly (Albanese & Mitchell, 1993; Berkson, 1993; Finucane, Shannon, & McGrath, 2009). However, the implementation of PBL in a less than curriculum-wide mode is more achievable in a broader context (Albanese, 2000). This means higher education institutions implement only a few PBL components in the curriculum. Or a teacher implements a few PBL components at the courses level. For this kind of implementation there is a need to identify PBL components and their effects on particular educational outputs (Hmelo-Silver, 2004; Newman, 2003). So far, however there has been little research about this topic. The main aims of this study were: (1) to identify each of PBL components which were manifested in the development of a valid and reliable PBL implementation questionnaire and (2) to determine the effect of each identified PBL component to specific graduates' competencies. The analysis was based on quantitative data collected in the survey of medicine graduates of Gadjah Mada University, Indonesia. A total of 225 graduates responded to the survey. The result of confirmatory factor analysis (CFA) showed that all individual constructs of PBL and graduates' competencies had acceptable GOFs (Goodness-of-fit). Additionally, the values of the factor loadings (standardize loading estimates), the AVEs (average variance extracted), CRs (construct reliability), and ASVs (average shared squared variance) showed the proof of convergent and discriminant validity. All values indicated valid and reliable measurements. The investigation of the effects of PBL showed that each PBL component had specific effects on graduates' competencies. Interpersonal competencies were affected by Student-centred learning (β = .137; p < .05) and Small group components (β = .078; p < .05). Problem as stimulus affected Leadership (β = .182; p < .01). Real-world problems affected Personal and organisational competencies (β = .140; p < .01) and Interpersonal competencies (β = .114; p < .05). Teacher as facilitator affected Leadership (β = 142; p < .05). Self-directed learning affected Field-related competencies (β = .080; p < .05). These results can help higher education institution and educator to have informed choice about the implementation of PBL components. With this information higher education institutions and educators could fulfil their educational goals and in the same time meet their limited resources. This study seeks to improve prior studies' research method in four major ways: (1) by indentifying PBL components based on theory and empirical data; (2) by using latent variables in the structural equation modelling instead of using a variable as a proxy of a construct; (3) by using CFA to validate the latent structure of the measurement, thus providing better evidence of validity; and (4) by using graduate survey data which is suitable for analysing PBL effects in the frame work of the relationship between higher education and the world of work.