2 resultados para Climatic And Environmental Change

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use has become a force of global importance, considering that 34% of the Earth’s ice-free surface was covered by croplands or pastures in 2000. The expected increase in global human population together with eminent climate change and associated search for energy sources other than fossil fuels can, through land-use and land-cover changes (LUCC), increase the pressure on nature’s resources, further degrade ecosystem services, and disrupt other planetary systems of key importance to humanity. This thesis presents four modeling studies on the interplay between LUCC, increased production of biofuels and climate change in four selected world regions. In the first study case two new crop types (sugarcane and jatropha) are parameterized in the LPJ for managed Lands dynamic global vegetation model for calculation of their potential productivity. Country-wide spatial variation in the yields of sugarcane and jatropha incurs into substantially different land requirements to meet the biofuel production targets for 2015 in Brazil and India, depending on the location of plantations. Particularly the average land requirements for jatropha in India are considerably higher than previously estimated. These findings indicate that crop zoning is important to avoid excessive LUCC. In the second study case the LandSHIFT model of land-use and land-cover changes is combined with life cycle assessments to investigate the occurrence and extent of biofuel-driven indirect land-use changes (ILUC) in Brazil by 2020. The results show that Brazilian biofuels can indeed cause considerable ILUC, especially by pushing the rangeland frontier into the Amazonian forests. The carbon debt caused by such ILUC would result in no carbon savings (from using plant-based ethanol and biodiesel instead of fossil fuels) before 44 years for sugarcane ethanol and 246 years for soybean biodiesel. The intensification of livestock grazing could avoid such ILUC. We argue that such an intensification of livestock should be supported by the Brazilian biofuel sector, based on the sector’s own interest in minimizing carbon emissions. In the third study there is the development of a new method for crop allocation in LandSHIFT, as influenced by the occurrence and capacity of specific infrastructure units. The method is exemplarily applied in a first assessment of the potential availability of land for biogas production in Germany. The results indicate that Germany has enough land to fulfill virtually all (90 to 98%) its current biogas plant capacity with only cultivated feedstocks. Biogas plants located in South and Southwestern (North and Northeastern) Germany might face more (less) difficulties to fulfill their capacities with cultivated feedstocks, considering that feedstock transport distance to plants is a crucial issue for biogas production. In the fourth study an adapted version of LandSHIFT is used to assess the impacts of contrasting scenarios of climate change and conservation targets on land use in the Brazilian Amazon. Model results show that severe climate change in some regions by 2050 can shift the deforestation frontier to areas that would experience low levels of human intervention under mild climate change (such as the western Amazon forests or parts of the Cerrado savannas). Halting deforestation of the Amazon and of the Brazilian Cerrado would require either a reduction in the production of meat or an intensification of livestock grazing in the region. Such findings point out the need for an integrated/multicisciplinary plan for adaptation to climate change in the Amazon. The overall conclusions of this thesis are that (i) biofuels must be analyzed and planned carefully in order to effectively reduce carbon emissions; (ii) climate change can have considerable impacts on the location and extent of LUCC; and (iii) intensification of grazing livestock represents a promising venue for minimizing the impacts of future land-use and land-cover changes in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many plant strengtheners are promoted for their supposed effects on nutrient uptake and/or resistance induction (IR). In addition, many organic fertilizers are supposed to enhance plant health and several studies have shown that tomatoes grown organically are more resistant to late blight, caused by Phytophthora infestans to tomatoes grown conventionally. Much is known about the mechanisms underlying IR. In contrast, there is no systematic knowledge about genetic variation for IR. Therefore, the following questions were addressed in the presented dissertation: (i) Is there genetic variation among tomato genotypes for inducibility of resistance to P. infestans? (ii) How do different PS compare with the chemical inducer BABA in their ability to IR? (iii) Does IR interact with the inducer used and different organic fertilizers? A varietal screening showed that contrary to the commonly held belief IR in tomatoes is genotype and isolate specific. These results indicate that it should be possible to select for inducibility of resistance in tomato breeding. However, isolate specificity also suggests that there could be pathogen adaptation. The three tested PS as well as two of the three tested organic fertilisers all induced resistance in the tomatoes. Depending on PS or BABA variety and isolate effects varied. In contrast, there were no variety and isolate specific effects of the fertilisers and no interactions with the PS and fertilisers. This suggests that the different PS should work independent of the soil substrate used. In contrast the results were markedly different when isolate mixtures were used for challenge inoculations. Plants were generally less susceptible to isolate mixtures than to single isolates. In addition, the effectiveness of the PS was greater and more similar to BABA when isolate mixtures were used. The fact that the different PS and BABA differed in their ability to induce resistance in different host genotype -pathogen isolate combinations puts the usefulness of IR as a breeding goal in question. This would result in varieties depending on specific inducers. The results with the isolate mixtures are highly relevant. On the one hand they increase the effectiveness of the resistance inducers. On the other hand, measures that increase the pathogen diversity such as the use of diversified host populations will also increase the overall resistance of the hosts. For organic tomato production the results indicate that it is possible to enhance the tomato growing system with respect to plant health management by using optimal fertilisers, plant strengtheners and any measures that increase system diversity.