3 resultados para Cellular senescence

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der Janus Kinase / signal transducer and activator of transcription (JAK/STAT) Signal- transduktionsweg wird für viele Entwicklungsvorgänge benötigt und spielt eine zentrale Rolle bei der Hämatopoese und bei der Immunantwort. Obwohl der JAK/STAT-Signalweg in den vergangenen Jahren Gegenstand intensiver Forschung war, erschwert die Redundanz des Signalwegs bei Wirbeltieren genetische Untersuchungen zur Identifizierung derjenigen Mechanismen, die den JAK/STAT-Signalweg regulieren. Der JAK/STAT-Signaltransduktionsweg ist evolutionär konserviert und ebenfalls bei der Taufliege Drosophila melanogaster vorhanden. Im Gegensatz zu Wirbeltieren ist der Signaltransduktionsweg von Drosophila weniger redundant und beinhaltet folgende Hauptkomponenten: den Liganden Unpaired (Upd), den Transmembranrezeptor Domeless (Dome), die einzige JAK-Tyrosinkinase Hopscotch (hop), sowie den Transkriptionsfaktor STAT92E. In der vorliegenden Arbeit wird die Rolle des JAK/STAT-Signalwegs bei der zellulären Proliferation mithilfe der Modellsysteme der Flügel- und der Augen-Imaginalscheiben von Drosophila charakterisiert. "Loss-of-function"- und "Gain-of-function"-Experimente zur Verminderung beziehungs-weise Erhöhung der Signalaktivität zeigten, dass der JAK/STAT-Signalweg eine Rolle bei der zellulären Proliferation der Flügel-Imaginalscheiben spielte, ohne die Zellgröße oder Apoptose zu verändern. Bei der Flügelentwicklung während des zweiten und des frühen dritten Larvalstadiums war die Aktivität des JAK/STAT-Signalwegs sowohl notwendig für die zelluläre Proliferation als auch hinreichend, um Überproliferation anzutreiben. Allerdings änderte sich während der späten dritten Larvalstadien die JAK/STAT-Signalaktivität, sodass endogene STAT92E-Mengen einen anti-proliferativen Effekt im gleichen Gewebe aufwiesen. Weiterhin reichte die ektopische Aktivierung des JAK/STAT-Signalwegs zu diesem späten Entwicklungszeitpunkt aus, um die Mitose zu inhibieren und die Zellen in der Phase G2 des Zellzyklus zu arretieren. Diese Ergebnisse legen den Schluss nahe, dass der JAK/STAT-Signalweg sowohl pro-proliferativ in frühen Flügelscheiben als auch anti-proliferativ zu späten Stadien der Flügelscheiben-Entwicklung wirken kann. Dieser späte anti-proliferative Effekt wurde durch einen nicht-kanonischen Mechanismus der STAT92E-Aktivierung vermittelt, da späte hop defiziente Zellverbände im Vergleich zu Wildtyp-Zellen keine Veränderungen im Ausmaß der zellulären Proliferation aufwiesen. Ferner konnte gezeigt werden, dass eine während der Larvalstadien exprimierte dominant-negative und im N-Terminus deletierte Form von STAT92E (?NSTAT92E) nicht für den anti-proliferativen Effekt verantwortlich ist. Diese Tatsache ist ein weiteres Indiz dafür, dass das vollständige STAT92E den späten anti-proliferativen Effekt verursacht. Um Modulatoren für die von JAK/STAT vermittelte zelluläre Proliferation zu identifieren, wurde ein P-Element-basierter genetischer Interaktions-Screen in einem sensibilisierten genetischen Hintergrund durchgeführt. Insgesamt wurden dazu 2267 unabhängige P-Element-Insertionen auf ihre Wechselwirkung mit der JAK/STAT-Signalaktivität untersucht und 24 interagierende Loci identifiziert. Diese Kandidaten können in folgende Gruppen eingeordnet werden: Zellzyklusproteine, Transkriptionsfaktoren, DNA und RNA bindende Proteine, ein Mikro-RNA-Gen, Komponenten anderer Signaltransduktionswege und Zelladhäsionsproteine. In den meisten Fällen wurden mehrere Allele der interagierenden Kandidatengene getestet. 18 Kandidatengene mit übereinstimmend interagierenden Allelen wurden dann zur weiteren Analyse ausgewählt. Von diesen 18 Kandidaten-Loci wurden 7 mögliche JAK/STAT-Signalwegskomponenten und 6 neue Zielgene des Signalwegs gefunden. Zusammenfassend wurde das Verständnis um STAT92E verbessert. Dieses Protein hat die gleiche Funktion wie das STAT3-Protein der Wirbeltiere und treibt die zelluläre Proliferation voran. Analog zu STAT1 hat STAT92E aber auch einen anti-proliferativen Effekt. Ferner wurden 24 mögliche Modulatoren der JAK/STAT-Signalaktivität identifiziert. Die Charakterisierung dieser Wechselwirkungen eröffnet vielversprechende Wege zu dem Verständnis, wie JAK/STAT die zelluläre Proliferation reguliert und könnte bei der Entwicklung von neuartigen therapeutischen Targets zur Behandlung von Krebskrankheiten und Entwicklungsstörungen beitragen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circadiane Schrittmacher koordinieren die täglichen Rhythmen in Physiologie und Verhalten in lebenden Organismen. Die Madeira Schabe Rhyparobia maderae (Synonym: Leucophaea maderae) ist ein gut etabliertes Modell, um die neuronalen Mechanismen der circadianen Rhythmen bei Insekten zu studieren. Die akzessorische Medulla (AME) in den optischen Loben des Gehirns wurde als das circadiane Schrittmacherzentrum der Madeira Schabe identifiziert, das circadiane Rhythmen in der Laufaktivität steuert. Über die Neurotransmitter der Eingangswege in das circadiane System der Madeira Schabe ist noch nicht viel bekannt. Das Hauptziel dieser Arbeit war es, mögliche Eingangssignale in die innere Uhr der Madeira Schabe zu bestimmen. An primären Zellkulturen von AME-Neuronen wurden Calcium-Imaging Experimente durchgeführt, um die Neurotransmitter-abhängigen Veränderungen in der intrazellulären Calcium-Konzentration zu messen. Darüber hinaus wurde die Signalkaskade des Neuropeptids Pigment Dispersing Factor (PDF), dem wichtigsten Kopplungsfaktor in circadianen Schrittmachern von Insekten, in Calcium-Imaging und Förster-Resonanzenergietransfer (FRET) Experimenten untersucht. Acetylcholin (ACh) erhöht die intrazelluläre Calcium-Konzentration in der Mehrzahl der circadianen Schrittmacherneurone der Madeiraschabe. Applikation von GABA, Serotonin und Octopamin erhöhten oder reduzierten die intrazelluläre Calcium-Konzentration in den AME-Neuronen, während Histamin und Glutamat die intrazelluläre Calcium-Konzentration ausschließlich reduzierten. Pharmakologische Experimente zeigten, dass die AME-Neurone ACh über ionotrope nikotinische ACh-Rezeptoren detektierten, während GABA über ionotrope GABAA-Rezeptoren und metabotrope GABAB-Rezeptoren detektiert wurde. Diese Ergebnisse deuten darauf hin, dass die circadiane Aktivität der Schabe durch verschiedene Eingänge, einschließlich ACh, GABA, Glutamat, Histamin, Octopamin und Serotonin, moduliert wird. Bei den FRET Studien wurde ein Proteinkinase A (PKA)-basierter FRET Sensor zur Detektion von cyclischem AMP (cAMP) verwendet. Es wurde gezeigt, dass PDF über Adenylylcyclase-abhängige und -unabhängige Signalwege wirken kann. Zusätzlich wurden Laufrad-Assays durchgeführt, um Phasenverschiebungen im Rhythmus der circadianen Laufaktivität zu detektieren, nachdem der Neurotransmitter Histamin zu verschiedenen circadianen Zeiten injiziert wurde. Histamin-Injektionen durch die Komplexaugen der Schabe ergaben eine biphasische Phasenantwortkurve (phase response curve) mit Phasenverzögerungen in der Laufaktivität am späten subjektiven Tag und am Beginn der subjektiven Nacht und Phasenbeschleunigungen in der späten subjektiven Nacht. Schließlich wurde eine extrazelluläre Ableittechnik an lebenden Schaben etabliert, die gleichzeitige Langzeit-Ableitungen von der AME, des Komplexauges (Elektroretinogramm = ERG), und der Beinmuskulatur (Elektromyogramm = EMG) für mehrere Tage ermöglichte. Diese Methode bietet einen Ausgangspunkt für weitere elektrophysiologische Untersuchungen des circadianen Systems der Schabe, in denen Substanzen (z.B. Neurotransmitter und Neuropeptide) analysiert werden können, die einen Einfluss auf den circadianen Rhythmus in der Laufaktivität haben