9 resultados para Cation exchanged

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Dissertation leistet einen Beitrag zur Konstruktion von Geschlechterverhältnissen in der Ehe vor der Reformation. Untersucht werden zwei Texte des 15. Jahrhunderts: Die sogenannte Erste deutsche Bibel (EDB) und die Dichtung Der Ackermann aus Böhmen von Johannes von Tepl. Die Wort-für-Wort-Analyse beider Texte hat aus der zeitgebundenen deutschen Sprachgestalt spezifi-sche Denkfiguren erschlossen. Zentral ist die Gestaltung des Verhältnisses zwischen Gott und Menschen als Rechtsbeziehung Lehen. Das erste Kapitel analysiert und interpretiert die für Ehe- und Geschlechterkonzepte grund-legenden Aussagen von Genesis 1 - 4,1 und den Kanon der fünf Weisheitsbücher der EDB mit folgenden Ergebnissen: 1. Die EDB ist als Rechtsbuch zu lesen, dessen Zentrum die göttliche Herrschaft mit ihrer Rechts-ordnung ist. In diesem Rahmen wird für Mann und Frau die Ordnung Paar definiert. 2. Beide Geschlechter sind gleichwertig. Das kommt in ihren jeweiligen Handlungsfeldern (Werkordnungen) zum Ausdruck. 3. Der Begriff hilffen für die Ehefrau bedeutet Hilfe zum Heil ihres Mannes und eine spezifische Gottesnähe. Dies ist ein entscheidender Unterschied zu Luthers Bibelübersetzung, welche die Frau als untergeordnete Gehilfin des Mannes gestaltet. (Anhang III stellt die EDB-Verse der Lu-therübersetzung von 1545 gegenüber.) 4. Der Sündenfall wird als Rechtsbruch beschrieben, der den Wechsel von der Schöpfungsord-nung im Paradies zur Weltordnung auslöst, die mit den Urteilen Gottes über Frau und Mann beginnt (Genesis 3). Die Urteile fassen die Ehe in einem Diagonalkreuz, welches vier Faktoren untrennbar verbindet: Herrschaft mit Unterordnung sowie hilffen (Gebären) mit Tod. Die Ge-schlechterunterschiede sind konstituierend für die Ehe im Diagonalkreuz. In der EDB lassen sich drei Paarkonstellationen unterscheiden: die Ehe im Diagonalkreuz zwischen dem guten weib und dem weisen Mann, die Ehe ohne Diagonalkreuz zwischen dem un-weib und dem unweisen Mann und die nichteheliche Geschlechterbeziehung zwischen dem gemeinem weib und dem ee-brecher. Das zweite Kapitel der Dissertation vergleicht die alttestamentarischen Ehekonzepte der EDB mit denen der Dichtung Ackermann aus Böhmen. Die rhetorische Form des Streitgesprächs zwischen Witwer und hern Tot zeigt die Struktur eines deutschrechtlichen Prozesses. In diesem Rahmen gewinnen die gegensätzlichen Aussagen über die Ehe die Bedeutung von Rechtspositionen, die in konträren göttlichen Herrschaftsordnungen verortet werden. Die vom Witwer vertretene Herrschaftsordnung beruht auf der alttestamentarischen Rechtsordnung der EDB, während die Positionen des hern Tot diese Rechtsordnung verkehren, indem er die Herrschaftsordnung der Welt als sein Eigen definiert. Ein weiteres Ergebnis des Vergleichs zwischen der EDB und dem Ackermann aus Böhmen ist, dass sowohl die alttestamentarischen Bücher als auch die Dichtung Rechtsfiguren präsentieren. Entscheidend sind in beiden Texten die Urteile Gottes, die jeweils einen Paradigmenwechsel kon-stituieren. In der EDB wird nach dem Sündenfall die (paradiesische) Rechtsordnung in die Rechtsordnung ee gewandelt. Im Ackermann wird die alttestamentarische Rechtsordnung ee der EDB durch die ordenung Tod ersetzt, mit der zugleich die Ordnung Paar nicht mehr gilt. Die Urtei-le Gottes in der EDB definieren das Paar als zweigeschlechtlichen Menschen, das Urteil im Ackermann charakterisiert zwei Einzelmenschen: Mann oder Frau. Damit wird die zentrale Bedeutung der Ehefrau als hilffen zum Heil ihres Mannes aufgehoben, weil die wechselseitige Angewiesenheit von Mann und Frau nicht mehr gegeben ist. Insofern ist hier ein wichtiger Schritt zum reformatorischen Eheverständnis zu erkennen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Judged by their negative nutrient balances, low soil cover and low productivity, the predominant agro-pastoral farming systems in the Sudano-Sahelian zone of West Africa are highly unsustainable for crop production intensification. With kaolinite as the main clay type, the cation exchange capacity of the soils in this region, often less than 1 cmol_c kg^-1 soil, depends heavily on the organic carbon (Corg) content. However, due to low carbon sequestration and to the microbe, termite and temperature-induced rapid turnover rates of organic material in the present land-use systems, Corg contents of the topsoil are very low, ranging between 1 and 8 g kg^-1 in most soils. For sustainable food production, the availability of phosphorus (P) and nitrogen (N) has to be increased considerably in combination with an improvement in soil physical properties. Therefore, the adoption of innovative management options that help to stop or even reverse the decline in Corg typically observed after cultivating bush or rangeland is of utmost importance. To maintain food production for a rapidly growing population, targeted applications of mineral fertilisers and the effective recycling of organic amendments as crop residues and manure are essential. Any increase in soil cover has large effects in reducing topsoil erosion by wind and water and favours the accumulation of wind-blown dust high in bases which in turn improves P availability. In the future decision support systems, based on GIS, modelling and simulation should be used to combine (i) available fertiliser response data from on-station and on-farm research, (ii) results on soil productivity restoration with the application of mineral and organic amendments and (iii) our present understanding of the cause-effect relationships governing the prevailing soil degradation processes. This will help to predict the effectiveness of regionally differentiated soil fertility management approaches to maintain or even increase soil Corg levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil price rises more and more, and the world energy consumption is projected to expand by 50 percent from 2005 to 2030. Nowadays intensive research is focused on the development of alternative energies. Among them, there are dye-sensitized nanocrystalline solar cells (DSSCs) “the third generation solar cells”. The latter have gained attention during the last decade and are currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic. At present DSSCs with ruthenium based dyes exhibit highest efficiencies (ca 11%). The objective of the present work is to fabricate, characterize and improve the performance of DSSCs based on metal free dyes as sensitizers, especially on perylene derivatives. The work begins by a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the DSSCs. Chapter 2 and 3 discuss the state of the art of sensitizers used in DSSCs, present the compounds used as sensitizer in the present work and illustrate practical issues of experimental techniques and device preparation. A comparative study of electrolyte-DSSCs based on P1, P4, P7, P8, P9, and P10 are presented in chapter 4. Experimental results show that the dye structure plays a crucial role in the performance of the devices. The dye based on the spiro-concept (bipolar spiro compound) exhibited a higher efficiency than the non-spiro compounds. The presence of tert-butylpyridine as additive in the electrolyte was found to increase the open circuit voltage and simultaneously decrease the efficiency. The presence of lithium ions in the electrolyte increases both output current and the efficiency. The sensitivity of the dye to cations contained in the electrolyte was investigated in the chapter 5. FT-IR and UV-Vis were used to investigate the in-situ coordination of the cation to the adsorbed dye in the working devices. The open-circuit voltage was found to depend on the number of coordination sites in the dye. P1 with most coordination sites has shown the lowest potential drop, opposite to P7, which is less sensitive to cations in the working cells. A strategy to improve the dye adsorption onto the TiO2 surface, and thus the light harvesting efficiency of the photoanode by UV treatment, is presented in chapter 6. The treatment of the TiO2 film with UV light generates hydroxyl groups and renders the TiO2 surface more and more hydrophilic. The treated TiO2 surface reacts readily with the acid anhydride group of the dye that acts as an anchoring group and improves the dye adsorption. The short-circuit current density and the efficiency of the electrolyte-based dye cells was considerably improved by the UV treatment of the TiO2 film. Solid-state dye-sensitized solar cells (SSDs) based on spiro-MeOTAD (used as hole transport material) are studied in chapter 7. The efficiency of SSDs was globally found to be lower than that of electrolyte-based solar cells. That was due to poor pore filling of the dye-loaded TiO2 film by the spin-coated spiro-MeOTAD and to the significantly slower charge transport in the spiro-MeOTAD compared to the electrolyte redox mediator. However, the presence of the donor moieties in P1 that are structurally similar to spiro-MeOTAD was found to improve the wettability of the P1-loaded TiO2 film. As a consequence the performance of the P1-based solid-state cells is better compared to the cells based on non-spiro compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alle bisher untersuchten Lebewesen besitzen (circadiane) innere Uhren, die eine endogene Perioden-länge von ungefähr 24 Stunden generieren. Eine innere Uhr kann über Zeitgeber mit der Umwelt synchronisiert werden und ermöglicht dem Organismus, rhythmische Umweltveränderungen vorweg zu nehmen. Neben einem zentralen Schrittmacher, der Physiologie und Verhalten des Organismus steuert, gibt es in unterschiedlichen Organen auch periphere Uhren, die die zeitlichen Abläufe in der spezifischen Funktion dieser Organe steuern. In dieser Arbeit sollten zentrale und periphere Schrittmacherneurone von Insekten physiologisch untersucht und verglichen werden. Die Neurone der akzessorischen Medulla (AME) von Rhyparobia maderae dienten als Modellsystem für zentrale Schrittmacher, während olfaktorische Rezeptorneurone (ORNs) von Manduca sexta als Modellsystem für periphere Schrittmacher dienten. Die zentralen Schrittmacherneurone wurden in extrazellulären Ableitungen an der isolierten AME (Netzwerkebene) und in Patch-Clamp Experimenten an primären AME Zellkulturen (Einzelzellebene) untersucht. Auf Netzwerkebene zeigten sich zwei charakteristische Aktivitätsmuster: regelmäßige Aktivität und Wechsel zwischen hoher und niedriger Aktivität (Oszillationen). Es wurde gezeigt, dass Glutamat ein Neurotransmitter der weitverbreiteten inhibitorischen Synapsen der AME ist, und dass in geringem Maße auch exzitatorische Synapsen vorkommen. Das Neuropeptid pigment-dispersing factor (PDF), das von nur wenigen AME Neuronen exprimiert wird und ein wichtiger Kopplungsfaktor im circadianen System ist, führte zu Hemmungen, Aktivierungen oder Oszillationen. Die Effekte waren transient oder langanhaltend und wurden wahrscheinlich durch den sekundären Botenstoff cAMP vermittelt. Ein Zielmolekül von cAMP war vermutlich exchange protein directly activated by cAMP (EPAC). Auf Einzelzellebene wurde gezeigt, dass die meisten AME Neurone depolarisiert waren und deshalb nicht feuerten. Die Analyse von Strom-Spannungs-Kennlinien und pharmakologische Experimente ergaben, dass unterschiedliche Ionenkanäle vorhanden waren (Ca2+, Cl-, K+, Na+ Kanäle sowie nicht-spezifische Kationenkanäle). Starke, bei hohen Spannungen aktivierende Ca2+ Ströme (ICa) könnten eine wichtige Rolle bei Ca2+-abhängiger Neurotransmitter-Ausschüttung, Oszillationen, und Aktionspotentialen spielen. PDF hemmte unterschiedliche Ströme (ICa, IK und INa) und aktivierte nicht-spezifische Kationenströme (Ih). Es wurde angenommen, dass simultane PDF-abhängige Hyper- und Depolarisationen rhythmische Membranpotential-Oszillationen verursachen. Dieser Mechanismus könnte eine Rolle bei PDF-abhängigen Synchronisationen spielen. Die Analyse peripherer Schrittmacherneurone konzentrierte sich auf die Charakterisierung des olfaktorischen Corezeptors von M. sexta (MsexORCO). In anderen Insekten ist ORCO für die Membran-Insertion von olfaktorischen Rezeptoren (ORs) erforderlich. ORCO bildet Komplexe mit den ORs, die in heterologen Expressionssystemen als Ionenkanäle fungieren und Duft-Antworten vermitteln. Es wurde die Hypothese aufgestellt, dass MsexORCO in pheromonsensitiven ORNs in vivo nicht als Teil eines ionotropen Rezeptors sondern als Schrittmacherkanal fungiert, der unterschwellige Membranpotential-Oszillationen generiert. MsexORCO wurde mit vermeintlichen Pheromonrezeptoren in human embryonic kidney (HEK 293) Zellen coexprimiert. Immuncytochemie und Ca2+ Imaging Experimente zeigten sehr schwache Expressionsraten. Trotzdem war es möglich zu zeigen, dass MsexORCO wahrscheinlich ein spontan-aktiver, Ca2+-permeabler Ionenkanal ist, der durch den ORCO-Agonisten VUAA1 und cyclische Nucleotide aktiviert wird. Außerdem wiesen die Experimente darauf hin, dass MsexOR-1 offensichtlich der Bombykal-Rezeptor ist. Eine weitere Charakterisierung von MsexORCO in primären M. sexta ORN Zellkulturen konnte nicht vollendet werden, weil die ORNs nicht signifikant auf ORCO-Agonisten oder -Antagonisten reagierten.