7 resultados para COMPUTER SCIENCE, THEORY
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In der vorliegenden Arbeit wird die Konzeption und Realisierung der Persistenz-, Verteilungs- und Versionierungsbibliothek CoObRA 2 vorgestellt. Es werden zunächst die Anforderungen an ein solches Rahmenwerk aufgenommen und vorhandene Technologien für dieses Anwendungsgebiet vorgestellt. Das in der neuen Bibliothek eingesetzte Verfahren setzt Änderungsprotokolle beziehungsweise -listen ein, um Persistenzdaten für Dokumente und Versionen zu definieren. Dieses Konzept wird dabei durch eine Abbildung auf Kontrukte aus der Graphentheorie gestützt, um die Semantik von Modell, Änderungen und deren Anwendung zu definieren. Bei der Umsetzung werden insbesondere das Design der Bibliothek und die Entscheidungen, die zu der gewählten Softwarearchitektur führten, eingehend erläutert. Dies ist zentraler Aspekt der Arbeit, da die Flexibilität des Rahmenwerks eine wichtige Anforderung darstellt. Abschließend werden die Einsatzmöglichkeiten an konkreten Beispielanwendungen erläutert und bereits gemachte Erfahrungen beim Einsatz in CASE-Tools, Forschungsanwendungen und Echtzeit-Simulationsumgebungen präsentiert.
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.
Resumo:
In der vorliegenden Dissertation werden Systeme von parallel arbeitenden und miteinander kommunizierenden Restart-Automaten (engl.: systems of parallel communicating restarting automata; abgekürzt PCRA-Systeme) vorgestellt und untersucht. Dabei werden zwei bekannte Konzepte aus den Bereichen Formale Sprachen und Automatentheorie miteinander vescrknüpft: das Modell der Restart-Automaten und die sogenannten PC-Systeme (systems of parallel communicating components). Ein PCRA-System besteht aus endlich vielen Restart-Automaten, welche einerseits parallel und unabhängig voneinander lokale Berechnungen durchführen und andererseits miteinander kommunizieren dürfen. Die Kommunikation erfolgt dabei durch ein festgelegtes Kommunikationsprotokoll, das mithilfe von speziellen Kommunikationszuständen realisiert wird. Ein wesentliches Merkmal hinsichtlich der Kommunikationsstruktur in Systemen von miteinander kooperierenden Komponenten ist, ob die Kommunikation zentralisiert oder nichtzentralisiert erfolgt. Während in einer nichtzentralisierten Kommunikationsstruktur jede Komponente mit jeder anderen Komponente kommunizieren darf, findet jegliche Kommunikation innerhalb einer zentralisierten Kommunikationsstruktur ausschließlich mit einer ausgewählten Master-Komponente statt. Eines der wichtigsten Resultate dieser Arbeit zeigt, dass zentralisierte Systeme und nichtzentralisierte Systeme die gleiche Berechnungsstärke besitzen (das ist im Allgemeinen bei PC-Systemen nicht so). Darüber hinaus bewirkt auch die Verwendung von Multicast- oder Broadcast-Kommunikationsansätzen neben Punkt-zu-Punkt-Kommunikationen keine Erhöhung der Berechnungsstärke. Desweiteren wird die Ausdrucksstärke von PCRA-Systemen untersucht und mit der von PC-Systemen von endlichen Automaten und mit der von Mehrkopfautomaten verglichen. PC-Systeme von endlichen Automaten besitzen bekanntermaßen die gleiche Ausdrucksstärke wie Einwegmehrkopfautomaten und bilden eine untere Schranke für die Ausdrucksstärke von PCRA-Systemen mit Einwegkomponenten. Tatsächlich sind PCRA-Systeme auch dann stärker als PC-Systeme von endlichen Automaten, wenn die Komponenten für sich genommen die gleiche Ausdrucksstärke besitzen, also die regulären Sprachen charakterisieren. Für PCRA-Systeme mit Zweiwegekomponenten werden als untere Schranke die Sprachklassen der Zweiwegemehrkopfautomaten im deterministischen und im nichtdeterministischen Fall gezeigt, welche wiederum den bekannten Komplexitätsklassen L (deterministisch logarithmischer Platz) und NL (nichtdeterministisch logarithmischer Platz) entsprechen. Als obere Schranke wird die Klasse der kontextsensitiven Sprachen gezeigt. Außerdem werden Erweiterungen von Restart-Automaten betrachtet (nonforgetting-Eigenschaft, shrinking-Eigenschaft), welche bei einzelnen Komponenten eine Erhöhung der Berechnungsstärke bewirken, in Systemen jedoch deren Stärke nicht erhöhen. Die von PCRA-Systemen charakterisierten Sprachklassen sind unter diversen Sprachoperationen abgeschlossen und einige Sprachklassen sind sogar abstrakte Sprachfamilien (sogenannte AFL's). Abschließend werden für PCRA-Systeme spezifische Probleme auf ihre Entscheidbarkeit hin untersucht. Es wird gezeigt, dass Leerheit, Universalität, Inklusion, Gleichheit und Endlichkeit bereits für Systeme mit zwei Restart-Automaten des schwächsten Typs nicht semientscheidbar sind. Für das Wortproblem wird gezeigt, dass es im deterministischen Fall in quadratischer Zeit und im nichtdeterministischen Fall in exponentieller Zeit entscheidbar ist.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.