28 resultados para CLASTIC INPUTS
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Research on soil fertility management in sub-Saharan Africa was criticized lately for largely ignoring farmers’ management strategies and the underlying principles. To fill this gap of knowledge, detailed interviews were conducted with 108 farm households about their rationale in managing the soil fertility of 307 individual fields in the agro-pastoral village territory of Chikal in western Niger. To amplify the farmers’ information on manuring and corralling practices, repeated measurements of applied amounts of manure were carried out within six 1-km^2 monitoring areas from February to October 1998. The interviews revealed that only 2% of the fields were completely fallowed for a period of 1–15 years, but 40% of the fields were at least partially fallowed. Mulching of crop residues was mainly practiced to fight wind erosion but was restricted to 36% of the surveyed fields given the alternative use of straw as livestock feed. Manure application and livestock corralling, as most effective tools to enhance soil fertility, were targeted to less than 30% of the surveyed fields. The application of complete fallow and manuring and corralling practices were strongly related to the households’ endowment with resources, especially with land and livestock. Within particular fields, measures were mainly applied to spots of poor soil fertility, while the restoration of the productivity of hard pans was of secondary importance. Given the limited spatial coverage of indigenous soil fertility measures and their strong dependence on farmers’ wealth, supplementary strategies to restrict the decline of soil fertility in the drought prone areas of Niger with their heavily weathered soils are needed.
Resumo:
In West Africa, yam can be an important crop to reduce poverty and hunger if Research and Development measures identify and properly engage its key production factors for enhanced outputs and better income. Data from 1400 households in Ghana and Nigeria were collected in a multistage random sampling survey (and complementary data from 76 farm family fields) with a structured questionnaire and qualitative interview questions. The results showed that yam is produced mainly with crude inputs/technologies to reduce high dependence on labour, seed production and control of pests and diseases. Yam is produced widely with purchased inputs including seed yam and hired labour; chemical fertiliser, herbicide and pesticides are less often used. Analyses of determinants of use of purchased inputs reveal three serious impediments to expansion in yam production: the increasing scarcity and high cost of hired labour, shortage of suitable land and poor farm roads. As employment opportunities for unskilled labour in urban centres are presently expanding, increased yam production will be hard to achieve without labour-saving inputs for at least some of the production tasks, especially seedbed preparation and weeding, and without improvement in infrastructure.
Resumo:
Neuropeptid Y (NPY) ist ein potenter Neurotransmitter im zentralen und peripheren Nervensystem der Mammalia. Es ist an der Regulation einer Vielzahl von physiologischen Prozessen beteiligt und scheint auch im retino-tectalen Transfer des visuellen Systems von Anuren eine zentrale Funktion einzunehmen. Die Retina bildet die erste Funktionseinheit bei der Verarbeitung visuellen Inputs. Für die Weiterverarbeitung sind primär das Tectum opticum (TO) und das Praetectum verantwortlich. Es gilt als wahrscheinlich, dass der praetecto-tectale Transfer durch NPY inhibitorisch moduliert wird und damit wesentlichen Einfluss auf die visuelle Mustererkennung und die Dämpfung der tectalen Erregungsausbreitung hat. Die Applikation von NPY auf die Tectumoberfläche schwächt die anfängliche Erregungswelle visuell evozierter Feldpotenziale stark ab und NPY könnte somit Einfluss auf die Axonendknoten retinaler Ganglienzellen des Typs R2, R3 und auch R4 haben. Es können jedoch keine detaillierten Aussagen gemacht werden welche Neuronen in welchem Umfang daran beteiligt sind. Im Rahmen meiner Arbeit, sollte der Einfluss von NPY auf die Spike-Amplitude und die Spike-Rate retinaler Ganglienzellen R2 und R3 bei Bombina orientalis analysiert werden, da diese den größten Input bei der visuellen Mustererkennung liefern und unterschiedliche Funktionen in diesem neuronalen Netzwerk haben. Hierzu wurden visuell evozierte Aktionspotenziale von R2 und R3 Neuronen im TO von Bombina orientalis abgeleitet und mit Hilfe der Analysesoftware Spike 2 bearbeitet und analysiert. Es konnte nachgewiesen werden, dass die Spike-Amplituden der R2 Neuronen 20 min nach NPY Applikation auf die Tectumoberfläche reduziert werden. Nach einer Erholungsphase 10 min nach Beenden der NPY-Applikation konnte ein Wiederanstieg der Spike-Amplituden gemessen werden, 20 min nach Beenden der NPY-Applikation kam es zu einem Abfall der Spike-Amplituden dessen Ursache unbekannt ist. Ob es ein Artefakt ist oder ob es sich hierbei um einen spezifischen Effekt von R2 Neuronen handelt muss noch geklärt werden. Die Spike-Amplituden der R3 Neuronen waren bereits 10 min nach NPY-Applikation reduziert, ein weitere Abfall der Spike-Amplituden konnte nicht verzeichnet werden. 10 min nach Beenden der NPY-Applikation konnte ein Anstieg der Spike-Amplituden verzeichnet werden, der sich stetig fortsetzte. Bei beiden Neuronentypen wurden 20 min nach Beenden der NPY-Applikation Spike-Amplituden nahe der Ausgangsamplitudenhöhe gemessen. Aufgrund des Verlaufes der R3 Neuronen ist davon auszugehen, dass die Feldpotenziale eher durch R3 Neuronen als durch R2 Neuronen beeinflusst werden, da er dem der Feldpotenziale gleicht. Auch bei der Untersuchung der Spike-Raten konnte eine Beeinflussung durch NPY nachgewiesen werden. Die R2 Neuronen zeigten 10 min nach NPY-Applikation einen Abfall der Spike-Raten der sich nach 20 min weiter fortsetzte. 10 min nach Beenden der NPY-Applikation konnte ein Wiederanstieg der Spike-Raten verzeichnet werden der sich stetig fortsetzte, die Werte blieben jedoch deutlich unter den gemessenen Ausgangswerten ohne eine NPY-Beeinflussung. Bei den R3 Neuronen konnte ein Abfall der Spike-Raten deutlich zeitverzögert nachgewiesen werden. 20 min nach Beenden der NPY-Applikation konnte ein Anstieg der Spike-Rate verzeichnet werden, jedoch gab es keine signifikanten Unterschiede der Spike-Raten zu den Werten ohne NPY-Beeinflussung. Der Vergleich der R2 und R3 Neuronen zeigt, dass bei den der R2 Neuronen ein schnellerer Effekt von NPY nachweisbar ist als die den R3 Neuronen. Aufgrund der von mir nachgewiesene NPY-induzierte Spike-Amplitudenabnahme retinaler R2 und R3 Neuronen muss davon ausgegangen werden, dass die Reduktion der Feldpotential durch NPY eher auf den Einfluss anderer Neuronen als R2 und R3 Neuronen zurückzuführen ist. Weder bei den R2 noch bei den R3 Neuronen konnte eine so schnelle und so starke Beeinflussung der Spike- Amplituden verzeichnet werden. Weiterhin zeigen meine Ergebnisse neuronale Bestätigung der von Funke 2005 beschrieben geringeren Strahlungsintensität sowie der geringeren Glukosemetabolisierung bei der 14C-2-Desoxyglukose Technik. Dies ist in der Form nur auf den Einfluss von R2 und R3 Neuronen zurückzuführen. Die von mir erzielten Ergebnisse stützen die Hypothese, dass NPY den retino-tectalen Signaltransfer inhibitorisch steuert einhergehend mit einer reduzierten Ausschüttung des praetectotectalen Transmitters Glutamat und weisen darauf hin, dass NPY über zwei verschiedene second-messenger vermittelte Prozesse diesen Signaltransfer steuert. Interessant ist in diesem Zusammenhang, dass diese nachhaltige Beeinflussung der visuellen Informationsverarbeitung durch NPY bei Bombina orientalis einem phylogenetisch basalen Vertreter der Anuren nachgewiesen werden konnte. Dies lässt den Schluss zu, dass solche grundlegenden neurochemischen Effekte des retino-tectalen Informationsgefüges evolutionär konserviert sind.
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.
Low-altitude aerial photography for optimum N fertilization of winter wheat on the North China Plain
Resumo:
Previous research has shown that site-specific nitrogen (N) fertilizer recommendations based on an assessment of a soil’s N supply (mineral N testing) and the crop’s N status (sap nitrate analysis) can help to decrease excessive N inputs for winter wheat on the North China Plain. However, the costs to derive such recommendations based on multiple sampling of a single field hamper the use of this approach at the on-farm level. In this study low-altitude aerial true-color photographs were used to examine the relationship between image-derived reflectance values and soil–plant data in an on-station experiment. Treatments comprised a conventional N treatment (typical farmers’ practice), an optimum N treatment (N application based on soil–plant testing) and six treatments without N (one to six cropping seasons without any N fertilizer input). Normalized intensities of the red, green and blue color bands on the photographs were highly correlated with total N concentrations, SPAD readings and stem sap nitrate of winter wheat. The results indicate the potential of aerial photography to determine in combination with on site soil–plant testing the optimum N fertilizer rate for larger fields and to thereby decrease the costs for N need assessments.
Resumo:
Little is known about nutrient fluxes as a criterion to assess the sustainability of traditional irrigation agriculture in eastern Arabia. In this study GIS-based field research on terraced cropland and groves of date palm (Phoenix dactylifera L.) was conducted over 2 years in two mountain oases of northern Oman to determine their role as hypothesized sinks for nitrogen (N), phosphorus (P) and potassium (K). At Balad Seet 55% of the 385 fields received annual inputs of 100–500 kg N ha^-1 and 26% received 500–1400 kg N ha^-1. No N was applied to 19% of the fields which were under fallow. Phosphorus was applied annually at 1–90 kg ha^-1 on 46% of the fields, whereas 27% received 90–210 kg ha^-1. No K was applied to 27% of the fields, 32% received 1–300 kg K ha^-1, and the remaining fields received up to 1400 kg ha^-1. At Maqta N-inputs were 61–277 kg ha^-1 in palm groves and 112–225 kg ha^-1 in wheat (Triticum spp.) fields, respective P inputs were 9–40 and 14–29 kg ha^-1, and K inputs were 98–421 and 113–227 kg ha^-1. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare surpluses of 131 kg N, 37 kg P, and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. This was despite the fact that N2-fixation by alfalfa (Medicago sativa L.), estimated at up to 480 kg ha^-1 yr^-1 with an average total dry matter of 22 t ha^-1, contributed to the cropland N-balance only at the former site. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 much higher at Balad Seet than with 84 kg N, 14 kg P, and 91 kg K ha^-1 at Maqta. The data show that both oases presently are large sinks for nutrients. Potential gaseous and leaching losses could at least partly be controlled by a decrease in nutrient input intensity and careful incorporation of manure.
Resumo:
Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.
Resumo:
Urban and peri-urban agriculture (UPA) increasingly supplies food and non-food values to the rapidly growing West African cities. However, little is known about the resource use efficiencies in West African small-scale UPA crop and livestock production systems, and about the benefits that urban producers and retailers obtain from the cultivation and sale of UPA products. To contribute to filling this gap of knowledge, the studies comprising this doctoral thesis determined nutrient use efficiencies in representative urban crop and livestock production system in Niamey, Niger, and investigated potential health risks for consumers. Also assessed was the economic efficiency of urban farming activities. The field study, which was conducted during November 2005 to January 2008, quantified management-related horizontal nutrient flows in 10 vegetable gardens, 9 millet fields and 13 cattle and small ruminant production units. These farms, selected on the basis of a preceding study, represented the diversity of UPA crop and livestock production systems in Niamey. Based on the management intensity, the market orientation and especially the nutrient input to individual gardens and fields, these were categorized as high or low input systems. In the livestock study, high and low input cattle and small ruminant units were differentiated based on the amounts of total feed dry matter offered daily to the animals at the homestead. Additionally, economic returns to gardeners and market retailers cultivating and selling amaranth, lettuce, cabbage and tomato - four highly appreciated vegetables in Niamey were determined during a 6-months survey in forty gardens and five markets. For vegetable gardens and millet fields, significant differences in partial horizontal nutrient balances were determined for both management intensities. Per hectare, average annual partial balances for carbon (C), nitrogen (N), phosphorus (P) and potassium (K) amounted to 9936 kg C, 1133 kg N, 223 kg P and 312 kg K in high input vegetable gardens as opposed to 9580 kg C, 290 kg N, 125 kg P and 351 kg K in low input gardens. These surpluses were mainly explained by heavy use of mineral fertilizers and animal manure to which irrigation with nutrient rich wastewater added. In high input millet fields, annual surpluses of 259 kg C ha-1, 126 kg N ha-1, 20 kg P ha-1 and 0.4 kg K ha-1 were determined. Surpluses of 12 kg C ha-1, 17 kg N ha-1, and deficits of -3 kg P ha-1 and -3 kg K ha-1 were determined for low input millet fields. Here, carbon and nutrient inputs predominantly originated from livestock manure application through corralling of sheep, goats and cattle. In the livestock enterprises, N, P and K supplied by forages offered at the farm exceeded the animals’ requirements for maintenance and growth in high and low input sheep/goat as well as cattle units. The highest average growth rate determined in high input sheep/goat units was 104 g d-1 during the cool dry season, while a maximum average gain of 70 g d-1 was determined for low input sheep/goat units during the hot dry season. In low as well as in high input cattle units, animals lost weight during the hot dry season, and gained weight during the cool dry season. In all livestock units, conversion efficiencies for feeds offered at the homestead were rather poor, ranging from 13 to 42 kg dry matter (DM) per kg live weight gain (LWG) in cattle and from 16 to 43 kg DM kg-1 LWG in sheep/goats, pointing to a substantial waste of feeds and nutrients. The economic assessment of the production of four high value vegetables pointed to a low efficiency of N and P use in amaranth and lettuce production, causing low economic returns for these crops compared to tomato and cabbage to which inexpensive animal manure was applied. The net profit of market retailers depended on the type of vegetable marketed. In addition it depended on marketplace for amaranth and lettuce, and on season and marketplace for cabbage and tomato. Analysis of faecal pathogens in lettuce irrigated with river water and fertilized with animal manure indicated a substantial contamination by Salmonella spp. with 7.2 x 104 colony forming units (CFU) per 25 g of produce fresh matter, while counts of Escherichia coli averaged 3.9 x 104 CFU g-1. In lettuce irrigated with wastewater, Salmonella counts averaged 9.8 x 104 CFU 25 g-1 and E. coli counts were 0.6 x 104 CFU g-1; these values exceeded the tolerable contamination levels in vegetables of 10 CFU g-1 for E. coli and of 0 CFU 25 g-1 for Salmonella. Taken together, the results of this study indicate that Niamey’s UPA enterprises put environmental safety at risk since excess inputs of N, P and K to crop and livestock production units favour N volatilisation and groundwater pollution by nutrient leaching. However, more detailed studies are needed to corroborate these indications. Farmers’ revenues could be significantly increased if nutrient use efficiency in the different production (sub)systems was improved by better matching nutrient supply through fertilizers and feeds with the actual nutrient demands of plants and animals.
Resumo:
The 21st century has brought new challenges for forest management at a time when globalization in world trade is increasing and global climate change is becoming increasingly apparent. In addition to various goods and services like food, feed, timber or biofuels being provided to humans, forest ecosystems are a large store of terrestrial carbon and account for a major part of the carbon exchange between the atmosphere and the land surface. Depending on the stage of the ecosystems and/or management regimes, forests can be either sinks, or sources of carbon. At the global scale, rapid economic development and a growing world population have raised much concern over the use of natural resources, especially forest resources. The challenging question is how can the global demands for forest commodities be satisfied in an increasingly globalised economy, and where could they potentially be produced? For this purpose, wood demand estimates need to be integrated in a framework, which is able to adequately handle the competition for land between major land-use options such as residential land or agricultural land. This thesis is organised in accordance with the requirements to integrate the simulation of forest changes based on wood extraction in an existing framework for global land-use modelling called LandSHIFT. Accordingly, the following neuralgic points for research have been identified: (1) a review of existing global-scale economic forest sector models (2) simulation of global wood production under selected scenarios (3) simulation of global vegetation carbon yields and (4) the implementation of a land-use allocation procedure to simulate the impact of wood extraction on forest land-cover. Modelling the spatial dynamics of forests on the global scale requires two important inputs: (1) simulated long-term wood demand data to determine future roundwood harvests in each country and (2) the changes in the spatial distribution of woody biomass stocks to determine how much of the resource is available to satisfy the simulated wood demands. First, three global timber market models are reviewed and compared in order to select a suitable economic model to generate wood demand scenario data for the forest sector in LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) is most suitable for obtaining projections on future roundwood harvests for further study with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to simulate wood demands for the global forestry sector conditional on selected scenarios from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is utilized to simulate the change in potential vegetation carbon stocks for the forested locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit forest inventory data on aboveground biomass to allocate the demands for raw forest products and identify locations of deforestation. Using the previous results as an input, a methodology to simulate the spatial dynamics of forests based on wood extraction is developed within the LandSHIFT framework. The land-use allocation procedure specified in the module translates the country level demands for forest products into woody biomass requirements for forest areas, and allocates these on a five arc minute grid. In a first version, the model assumes only actual conditions through the entire study period and does not explicitly address forest age structure. Although the module is in a very preliminary stage of development, it already captures the effects of important drivers of land-use change like cropland and urban expansion. As a first plausibility test, the module performance is tested under three forest management scenarios. The module succeeds in responding to changing inputs in an expected and consistent manner. The entire methodology is applied in an exemplary scenario analysis for India. A couple of future research priorities need to be addressed, particularly the incorporation of plantation establishments; issue of age structure dynamics; as well as the implementation of a new technology change factor in the GFPM which can allow the specification of substituting raw wood products (especially fuelwood) by other non-wood products.
Resumo:
Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.
Resumo:
Like elsewhere also in Kabul, Afghanistan urban and peri-urban agriculture (UPA) has often been accused of being resource inefficient and unsustainable causing negatives externalities to community health and to the surroundings. These arise from the inappropriate management and use of agricultural inputs, including often pesticides and inter-city wastes containing heavy metal residues and pathogens. To address these concerns, parallel studies with the aims of quantification of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) horizontal and vertical fluxes; the assessment of heavy metal and pathogen contaminations of UPA produce, and an economic analysis of cereal, vegetable and grape production systems conducted for two years in UPA of Kabul from April 2008 to October 2009. The results of the studies from these three UPA diverse production systems can be abridged as follows: Biennial net balances in vegetable production systems were positive for N (80 kg ha-1 ), P (75 kg ha-1) and C (3,927 kg ha-1), negative for K (-205 kg ha-1), whereas in cereal production systems biennial horizontal balances were positive for P (20 kg ha-1 ) and C (4,900 kg ha-1) negative for N (-155 kg ha-1) and K (-355 kg ha-1) and in vineyards corresponding values were highly positive for N (295 kg ha-1), P (235 kg ha-1), C (3,362 kg ha-1) and slightly positive for K (5 kg ha-1). Regardless of N and C gaseous emissions, yearly leaching losses of N and P in selected vegetable gardens varied from 70 - 205 kg N ha-1 and 5 - 10 kg P ha-1. Manure and irrigation water contributed on average 12 - 79% to total Inputs of N, P, K and C, 10 - 53% to total inputs of C in the gardens and fields. The elevated levels of heavy metal and pathogen loads on fresh UPA vegetables reflected contamination from increasing traffic in the city, deposits of the past decades of war, lacking collection and treatment of raw inter-city wastes which call for solutions to protect consumer and producer health and increase reliability of UPA productions. A cost-revenue analysis of all inputs and outputs of cereal, vegetable and grapes production systems over two years showed substantial differences in net UPA household income. To confirm these results, more detailed studies are needed, but tailoring and managing the optimal application of inputs to crop needs will significantly enhance farmer’s better revenues as will as environmental and produce quality.
Resumo:
Seed is the basic input to crop production. Farmer-based seed production as an alternative agricultural technology transfer is increasingly given especial attention in developing countries where food insecurity is critical. This paper aims to assess the seed production and dissemination strategy among smallholder farmers in eastern Ethiopia that has been introduced by Hararghe Catholic Secretariat (a Non-GovernmentalOrganization). A survey of 160 households in four administrative districts and focus group discussions were used to collect data. While narratives helped understand the process, logistic regressionwas used to identify determinants of land allocation to seed production. Results indicate the crucial role of informal networks and social capital as facilitators of access to production inputs, information and knowledge. The informal seed supply system initiated by the NGO has a huge potential to benefit smallholder farmers by improving their access to higher-yielding varieties of various crops, thereby contributing to an increase in their wellbeing. However, the traditional practice of seed exchange, influenced by social relations, will remain uneconomical to seed producers. Thus, the paper suggests that this potential can be further exploited if some preconditions such as establishment of seed banks, investment in human capital, removal of the underlying constraints and creation of reliable seed markets are given emphasis.
Resumo:
The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.
Resumo:
Due to growing land scarcity and lack of nutrient inputs, African farmers switched from shifting cultivation to continuous cropping and extended crop area by bringing fragile lands such as river banks and hill slopes into production. This accelerated soil fertility decline caused by erosion, harvesting and insufficient nutrient replenishment. We explored the feasibility to reduce nutrient depletion by increasing nutrient utilization efficiencies, while diversifying and increasing food production through the development of integrated aquaculture – agriculture (IAA). Considering the climatic conditions prevailing in Kenyan highlands, aquaculture production scenarios were ideotyped per agro-ecological zone. These aquaculture production scenarios were integrated into existing NUTrient MONitoring (NUTMON) farm survey data for the area. The nutrient balances and flows of the resulting IAA-systems were compared to present land use. The effects of IAA development on nutrient depletion and total food production were evaluated. With the development of IAA systems, nutrient depletion rates dropped by 23–35%, agricultural production increased by 2–26% and overall farm food production increased by 22–70%. The study demonstrates that from a bio-physical point of view, the development of IAA-systems in Africa is technically possible and could raise soil fertility and total farm production. Further studies that evaluate the economic feasibility and impacts on the livelihood of farming households are recommended.
Resumo:
Many efforts are undertaken for sustaining urban agriculture in African cities. This study therefore investigated nutrient management practices in urban vegetable gardens of Bobo Dioulasso, Burkina Faso (West Africa). Nitrogen (N), phosphorus (P), potassium (K), and carbon (C) fluxes were quantified and nutrient balances calculated for three gardens representing the typical commercial gardening + field crops and livestock system (cGCL) and three gardens representing the commercial gardening + semi-commercial field crop system (cGscC). Nutrient and C balances were similarly positive in both production systems reaching annual averages of 688 kg N ha -1, 251 kg P ha-1 yr-1, 189 kg K ha-1, and 31 t C ha-1. Inputs in all gardens exceeded the amounts recommended by the extension service. Gaseous emissions of N and C represented important pathways of N and C losses. The highest emission rates occurred during the hottest periods of the day and the peaks were observed after fertilizer applications. Management recommendations should be geared towards increasing nutrient use efficiencies by better tailoring nutrient availability to crop demand and adjusted fertilization techniques to mitigate N losses.