2 resultados para CENTRAL SET

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped. ----- Methods: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets. ----- Results: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams. ----- Conclusions: Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impacts of climate change are considered to be strong in countries located in tropical Africa that depend on agriculture for their food, income and livelihood. Therefore, a better understanding of the local dimensions of adaptation strategies is essential to develop appropriate measures that will mitigate adverse consequences. Hence, this study was conducted to identify the most commonly used adaptation strategies that farm households practice among a set of options to withstand the effects of climate change and to identify factors that affect the choice of climate change adaptation strategies in the Central Rift Valley of Ethiopia. To address this objective, Multivariate Probit model was used. The results of the model indicated that the likelihood of households to adapt improved varieties of crops, adjust planting date, crop diversification and soil conservation practices were 58.73%, 57.72%, 35.61% and 41.15%, respectively. The Simulated Maximum Likelihood estimation of the Multivariate Probit model results suggested that there was positive and significant interdependence between household decisions to adapt crop diversification and using improved varieties of crops; and between adjusting planting date and using improved varieties of crops. The results also showed that there was a negative and significant relationship between household decisions to adapt crop diversification and soil conservation practices. The paper also recommended household, socioeconomic, institutional and plot characteristics that facilitate and impede the probability of choosing those adaptation strategies.