2 resultados para CARBOHYDRATE-DEFICIENT TRANSFERRIN

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yacon (Smallanthus sonchifolius [Poepp. & Endl.] H. Robinson) is an under-exploited native root crop of the Andes, which stores oligofructans (fructo-oligosaccharides, FOS) as its main component of dry matter (DM). FOS are of increasing economic interest because of their low caloric value in human diets and bifidogenic benefits on colon health. Two on-farm experiments were conducted to: (i) determine the effect of shaded, short-term storage at 1990 and 2930 m a.s.l. in the Andean highlands; and (ii) address the effects of a traditional sunlight exposure (‘sunning’) on the carbohydrate composition in the DM of tuberous yacon roots. After a 6-day shade storage FOS concentrations were smaller at the lower (36–48% of DM) than at the higher altitude (39–58% of DM). After 12 days FOS concentrations were nearly equal at both sites (27–39% of DM). The concentration of free sugars (fructose, glucose, sucrose) increased accordingly from 29–34 to 48–52%. During the 6-day sunning experiment FOS concentrations decreased from 50–62 to 29–44% and free sugars increased from 29–34 to 45–51%. The results indicate that partial hydrolysis of oligofructans starts shortly after harvest. Storage in highland environments should wherever possible exploit the cooler temperatures at higher altitudes. Sunning of yacon’s tuberous roots effectively reduces much of the roots’ water content, in this experiment 40%, and thus allows energy to be saved if yacon is processed into dehydrated products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is well known that nutrient imbalance in shoot tissues may impair plant performance, the interactive effect between foliar phosphorus (P) application and varying P availability in the rooting medium on the nutritional status of sugarcane has not been well studied. To fill this research gap, four sugarcane varieties (IAC91-1099, IACSP94-2101, IACSP94-2094 and IACSP95-5000) were evaluated using a combination of two concentrations of P in nutrient solution (P-deficient, PD = 0.02 mmol L^(−1) and P-sufficient, PS = 0.5 mmol L^(−1)) and foliar P application (none and 0.16 mol L^(−1)). The spray was applied until drip point three times during the experiment with 15 days intervals, after which the plants were harvested to quantify growth and shoot concentration of nitrogen (N), P, magnesium (Mg), sulphur (S) and manganese (Mn). The responses of sugarcane plants to foliar P spray at different levels of P supply in the rooting medium was not genotype-dependent. It was demonstrated for the averaged values across varieties, that foliar P application enhanced sugarcane performance under low P, as revealed by improvements of leaf area and dry matter production of shoot and root of PD plants. Under P limitation we also observed diminished shoot concentration of N, P, Mg, S and increased concentration of Mn. However, foliar P spray increased the concentrations of N, P, S and reduced shoot Mn. Furthermore, shoot P:N, P:Mg, P:S, P:Mn and Mg:Mn concentration ratios exhibited a positive relationship with shoot dry matter production. In conclusion, low P supply in the rooting medium impairs nutrient balance in shoot tissues of sugarcane at early growth; however, this effect was ameliorated by foliar P application which merits further study under field conditions.