1 resultado para Boiling

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Element 115 is expected to be in group V-a of the periodic table and have most stable oxidation states of I and III. The oxidation state of I, which plays a minor role in bismuth chemistry, should be a major factor in 115 chemistry. This change will arise because of the large relativistic splitting of the spherically symmetric 7p_l/2 shell from the 7P_3/2 shell. Element 115 will therefore have a single 7p_3/2 electron outside a 7p^2_1/2 closed shell. The magnitude of the first ionization energy and ionic radius suggest a chemistry similar to Tl^+. Similar considerations suggest that 115^3+ will have a chemistry similar to Bi^3+. Hydrolysis will therefore be easy and relatively strongly complexing anions of strong acids will be needed in general to effect studies of complexation chemistry. Some other properties of 115 predicted are as follows: ionization potentials I 5.2 eV, II 18.1 eV, III 27.4 eV, IV 48.5 eV, 0 \rightarrow 5^+ 159 eV; heat of sublimation, 34 kcal (g-atom)^-1; atomic radius, 2.0 A; ionic radius, 115^+ 1.5 A, 115^3+ 1.0 A; entropy, 16 cal deg^-1 (g-atom)^-l (25°); standard electrode potential 115^+ |115, -1.5 V; melting and boiling points are similar to element 113.