4 resultados para Bestrahlung
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In dünnen Schichtsystemen, in denen es Grenzflächen zwischen antiferromagnetischen (AF) und ferromagnetischen (FM) Bereichen gibt, kann eine unidirektionale magnetische Anisotropie beobachtet werden: die Austauschanisotropie, auch "Exchange-Bias Effekt" genannt. Die Austauschanisotropie ist die Folge einer magnetischen Kopplung zwischen AF und FM. Makroskopisch äußert sich diese Anisotropie in einer Verschiebung der Magnetisierungskurve entlang der Magnetfeldachse. Anwendung findet die Austauschanisotropie z. B. in Spin-Valve Sensoren, deren Funktionsprinzip auf dem Riesen-Magnetowiderstand (engl. giant magnetoresistance, GMR) beruht. Die (thermische) Stabilität der Austauschanisotropie ist eine wichtige Voraussetzung für technische Anwendungen. Im Rahmen dieser Arbeit wurde untersucht, durch welche Materialeigenschaften die Austauschanisotropie in Schichtsystemen mit antiferromagnetischem Nickeloxid (NiO) bestimmt wird. Die Schichten wurden durch (reaktive) Kathodenzerstäubung hergestellt. Durch Variation der Depositionsbedingungen wurden Zusammensetzung und Struktur der NiO-Schichten verändert. Die Ergebnisse systematischer Analysen dieser Größen werden aufgeführt. Der Vergleich dieser Materialanalysen mit magnetischen Messungen an NiO/NiFe Schichtsystemen fšuhrt zu dem Ergebnis, dass die chemische Zusammensetzung und die Struktur der NiO-Schichten die thermische Stabilität der Austauschanisotropie entscheidend beeinflussen. Es wird zusätzlich gezeigt, dass die Stabilität der Austauschanisotropie durch einen Temperprozess im Anschluss an die Herstellung der Schichtsysteme entscheidend verbessert werden kann. Thermisch aktivierte, magnetische Relaxationsprozesse können außerdem zur Erhöhung der Austauschanisotropie führen. Des Weiteren werden zwei neuartige Methoden zur Modifizierung der Austauschanisotropie vorgestellt. Dabei wird gezeigt, dass durch die Bestrahlung der Schichtsysteme mit Helium-Ionen die magnetischen Eigenschaften der Schichtsysteme gezielt verändert und optimiert werden können. Der Einfluss der Ionenbestrahlung auf die Austauschanisotropie in NiO/NiFe Schichtsystemen und auf den Magnetowiderstand in FeMn basierten Spin-Valves steht dabei im Vordergrund der experimentellen Untersuchungen. Eine weitere Möglichkeit zur Modifizierung der Austauschanisotropie ist die Bestrahlung der Schichtsysteme mit kurzen Laserpulsen. Durch einen thermomagnetischen Prozess kann die Austauschanisotropie lokal verändert werden. Experimentelle Ergebnisse von diesem hier erstmals verwendeten Verfahren werden vorgestellt und interpretiert. Mit den beiden genannten Methoden ist es möglich, die Eigenschaften der Austauschanisotropie in Schichtsystemen nachträglich gezielt zu modifizieren.
Resumo:
Im Rahmen dieser Arbeit wurde eine Syntheseroute zu einem neuartigen heteroanalogen Spirobifluoren auf Basis von Thiophen entwickelt und optimiert. Der neue Spirokern konnte durch Anbringung von Elektronendonor- bzw. Elektronenakzeptorgruppen funktionalisiert werden. Die erhaltenen Funktionsmaterialien wurden spektroskopisch (Ultraviolet-Visible, Fluoreszenz), thermoanalytisch (Thermogravimetrische Analyse, Differential Thermo Analysis, Differential Scanning Calorimetry), elektrochemisch (Cyclovoltammetrie) sowie teilweise mittels Feldeffekttransistor charaktrisiert.Zur Totalsynthese des neuen auf Thiophen basierenden Spirokerns 4,4´-Spirobi[cyclopenta[2,1-b:3,4-b´]dithiophen] (SCPDT) wurde eine Syntheseroute entworfen, die ausgehend von Thiophen keine weiteren aufwändigen Precursormoleküle voraussetzt. Durch die Anbringung von stabilisierenden Endgruppen war es möglich neuartige Funktionsmaterialien mit niedrigem HOMO-LUMO-Gap herzustellen. Die phenyl- bzw. biphenylsubstituierten Spirocyclopentadithiophene 4P-SCPDT und 4BP-SCPDT sind im Vergleich zu den analogen, auf Spirobifluoren basierenden Verbindungen (Spiroquaterthiophen und Spirosexiphenyl) deutlich leichter oxidier- und reduzierbar. Das erniedrigte HOMO-LUMO-Gap ist auch im Absorptions- und Fluoreszenzspektrum durch die im Vergleich zu den spirobifluorenanalogen Molekülen bathochrome bzw. bathofluore Verschiebung deutlich erkennbar. Sehr gut sind die Ergebnisse der Feldeffekttransistor- und Phototransistor-Messungen an aufgedampfem 4P-SCPDT. So lässt sich eine Lochbeweglichkeit von 2*10^-4 cm2/Vs ermitteln. Dies ist die höchste Lochbeweglichkeit, die bei Spiromolekülen im amorphen Film mit einem bottom-contact FET gemessen wurde, wobei die Grenzfläche zwischen Elektrode und Halbleiter noch nicht optimiert wurde. Selbst nach zehnmonatiger Lagerung unter Atmosphärenbedingungen bei Raumtemperatur konnten nahezu die gleichen Werte gemessen werden. Dieses Ergebnis unterstreicht die morphologische Stabilität des amorphen Filmes. Unter Bestrahlung mit UV-Licht zeigt sich ein ausgeprägter photovoltaischer Effekt. Das überrascht, da 4P-SCPDT kein typisches Donor-Akzeptor-Molekül ist. Das gemessene Ansprechvermögen (Verhältnis des elektrischen Output zum optischen Input) ist höher als das von polykristallinem Kupfer-Phthalocyanin (CuPc), konjugierten Polymeren oder anderen Spiromolekülen. Um die Lochleitungs- bzw. Elektronenleitungseigenschaften zu optimieren wurden desweiteren noch Diphenylaminophenyl-, Diphenylaminothiophenyl-, Perfluorhexylthiophenyl und Tricyanovinyl-Endgruppen an den den SCPDT-Kern angebracht und die erhaltenen Funktionsmaterialien charakterisiert.
Resumo:
Die zunehmende Luftverschmutzung aufgrund des steigenden Energiebedarfs und Mobilitätsanspruchs der Bevölkerung, insbesondere in urbanen Gebieten, erhöht das Gefährdungspotential für die Gesundheit und verschlechtert so die Lebensqualität. Neben der Vermeidung von Emissionen toxischer Gase als mittel- und langfristig optimale Maßnahme zur Verbesserung der Luftqualität, stellt der Abbau emittierter Luftschadstoffe ein geeignetes und kurzfristig wirksames Mittel dar. Ein solcher Abbau kann durch Photokatalyse erzielt werden, allerdings nutzen Photokatalysatoren, die auf dem Halbleiter Titandioxid (TiO2) basieren, das solare Emissionsspektrum nur geringfüfig aus und sind in Innenräumen und anderen UV-schwachen Bereichen nicht wirksam. Um diese Nachteile zu überwinden, wurde ein Photokatalysator entwickelt und hergestellt, der aus TiO2 (P25) als UV-aktiver Photokatalysator und als Trägermaterial sowie einem seinerseits im Vis-Bereich photoaktiven Porphyrazin-Farbstoff als Beschichtung besteht. Die sterisch anspruchsvollen und in der Peripherie mit acht Bindungsmotiven für TiO2 versehenen Farbstoffmoleküle wurden zu diesem Zweck auf der Halbleiteroberfläche immobilisiert. Die so gebildeten Porphyrazin-Titandioxid-Hybride wurde ausführlich charakterisiert. Dabei wurden unter anderem die Bindung der Farbstoffe auf der Titandioxidoberfläche mittels Adsorptionsisothermen und die UV/Vis-spektroskopischen Eigenschaften des Hybridmaterials untersucht. Zur Bestimmung der photokatalytischen Aktivitäten der Einzelkomponenten und des Hybridmaterials wurden diese auf die Fähigkeit zur Bildung von Singulett-Sauerstoff, Wasserstoffperoxid und Hydroxylradikalen hin sowie in einem an die ISO-22197-1 angelehnten Verfahren auf die Fähigkeit zum Abbau von NO hin jeweils bei Bestrahlung in drei Wellenlängenbereichen (UV-Strahlung, blaues Licht und rotes Licht) geprüft. Darüber hinaus konnte die Aktivität des Hybridmaterials bei der Photodynamischen Inaktivierung (PDI) von Bakterien unter UV- und Rotlichtbestrahlung im Vergleich zum reinen Ttandioxid bestimmt werden. Die Charakterisierung des Hybridmaterials ergab, dass die Farbstoffmoleküle in einer neutralen Suspension nahezu irreversibel in einer monomolekularen Schicht mit einer Bindungsenergie von -41.43 kJ/mol an die Oberfläche gebunden sind und das Hybridmaterial mit hohen Extinktionskoeffizienten von bis zu 105 M-1cm-1 in großen Bereichen des UV/Vis-Spektrums Photonen absorbiert. Das Spektrum des Hybridmaterials setzt sich dabei additiv aus den beiden Einzelspektren zusammen. Die Auswirkungen der Charakterisierungsergebnisse auf die Bildung reaktiver Sauerstoffspezies wurden ausführlich diskutiert. Der Vergleich der Aktivitäten in Bezug auf die Bildung der reaktiven Sauerstoffspezies zeigte, dass die Aktivität des Hybridmaterials bis auf die bei der Bildung von Hydroxylradikalen unter UV-Bestrahlung in allen Versuchen deutlich höher war als die Aktivität des reinen Titandioxids. Im Gegensatz zu reinem Titandioxid erzeugte das Hybridmaterial in allen untersuchten Wellenlängenbereichen Mengen an Singulett-Sauerstoff, die photophysikalisch eindeutig detektierbar waren. Zur Erklärung und Deutung dieser Beobachtungen wurde eine differenzierte Diskussion geführt, die die Ergebnisse der Hybridpartikelcharakterisierung aufgreift und implementiert. Der Vergleich der NO-Abbaueffizienzen ergab bei allen Experimenten durchgängig deutlich höhere Werte für das Hybridmaterial. Zudem wurden durch das Hybridmaterial nachgewiesenermaßen wesentlich geringere Mengen des unerwünschten Nebenprodukts des Abbaus (NO2) gebildet. Im Zuge der Diskussion wurden verschiedene mögliche Mechanismen der „sauberen“ Oxidation zu Nitrat durch das Hybridmaterial vorgestellt. Untersuchungen zur Photodynamischen Inaktivierung verschiedener Bakterien ergaben, dass das Hybridmaterial neben einer zu P25 ähnlichen Aktivität unter UV-Bestrahlung, anders als P25, auch eine PDI verschiedener Bakterien unter Rotlichtbestrahlung erreicht.
Resumo:
In farbstoffsensibilisierten Solarzellen (DSSC) spielen Chromophore, die als Lichtsammel- und Energie-/Elektronentransfersysteme fungieren, eine zentrale Rolle. Phthalocyanine mit ihren intensiven Absorptionsbanden um 400 nm und 700 nm besitzen großes Potential für die effektive Sensibilisierung von Solarzellen. Trotz ihrer vielversprechenden physikochemischen Eigenschaften und intensiver Bemühungen erreichen Phthalocyanin-sensibilisierte Solarzellen nicht die Effizienzen, die bisher mit anderen Chromophorklassen erzielt werden konnten. In der vorliegenden Dissertation wurde die Entwicklung effizienter Lichtsammelsysteme für DSSC auf der Basis von Aza-substituierten Phthalocyaninen, sogenannten Pyrazinoporphyrazinen, verfolgt. Ein besonderer Fokus lag dabei auf einer Verbesserung der Absorptionseigenschaften der Chromophore im Bereich ihrer intrinsischen Absorptionslücke zwischen den Maxima um 400 nm und 700 nm. Um diese optische Lücke zu schließen wurden komplementär absorbierende BODIPY-Farbstoffe kovalent an synthetisch maßgeschneiderte Porphyrazine gebunden. Insgesamt wurden sechs neue Porphyrazin-Sensibilisatoren synthetisiert und photophysikalisch sowie elektrochemisch charakterisiert. Alle in dieser Arbeit untersuchten Porphyrazine tragen sterisch anspruchsvolle Tri(p-tolyl)propinyl-Gruppen um Agglomerationen zu vermeiden. Darüber hinaus wurden die Porphyrazine peripher entweder mit Hydroxy- oder Carboxygruppen als Bindungsstellen für oxidische Materialien ausgestattet sowie mit sechs BODIPY-Auxiliarfarbstoffen funktionalisiert, deren Substitutionsmuster variiert wurden. Zur Darstellung der komplexen Porphyrazine wurde eine Syntheseroute erarbeitet, die statistische Cyclisierungen unterschiedlicher Dinitril-Vorstufen beinhaltete und es ermöglichte, funktionelle Gruppen erst am vorgeformten Makrocyclus einzuführen. Die photophysikalische Untersuchung der hochfunktionalisierten Farbstoffe erfolgte über UV/Vis- und Fluoreszenzspektroskopie. Im Fall der BODIPY-Porphyrazin-Hybride schließt die zusätzliche Absorptionsbande der peripheren BODIPY-Einheiten die intrinsische Absorptionslücke der Porphyrazine. Die Hybride zeigen somit eine breite Absorption über den gesamten sichtbaren Spektralbereich mit hohen Extinktionskoeffizienten von ca. 4·10^5 M^−1cm^−1. Mittels Fluoreszenz- und Anregungsspektren wurde ein photoinduzierter Energie-transfer von den BODIPY-Einheiten auf den Porphyrazinkern nachgewiesen. Das elektrochemische Verhalten der BODIPY- und Porphyrazin-Verbindungen wurde mittels Cyclo- und Square-Wave-Voltammetrie untersucht. Die Effizienzen der Lichtenergieumwandlung wurden mit Hilfe von selbst-hergestellten und standardisierten farbstoffsensibilisierten Solarzellen bewertet. Alle Solarzellen zeigten eine messbare Photoaktivität unter Bestrahlung. Die Wirkungsgrade der Zellen lagen jedoch alle unter 1 %. Generell führten die Carboxyl-funktionalisierten Porphyrazine zu besseren Wirkungsgraden als die analogen, mit der tripodalen Ankergruppe ausgestatteten Derivate. Die mit Hilfe von Adsorptionsisothermen ermittelten Bindungskonstanten der Adsorption der Farbstoffe auf der TiO2-Oberfläche zeigten, dass beide Hafteinheiten eine feste Verankerung der Chromophore auf den TiO2-Elektroden ermöglichten. Insgesamt wirkte sich die Präsenz der peripheren BODIPY-Farbstoffe positiv auf die Wirkungsgrade der Solarzellen aus, jedoch nur in geringem Maß. Dieses Ergebnis wurde hauptsächlich auf die geringe Energiedifferenz zwischen der Leitungsbandkante des TiO2 und den LUMO-Energieniveaus der Chromophore zurückgeführt. Zusätzlich scheinen konkurrierende Prozesse wie die direkte Photoelektroneninjektion von den BODIPY-Einheiten in das TiO2 eine wichtige Rolle zu spielen. Neben der Anwendung in DSSC wurde die Wechselwirkung der Porphyrazine mit Graphen untersucht. Hierzu wurden A3B-Porphyrazine mit Pyrenyl-Seitenketten ausgestattet, die eine nicht-kovalente Verankerung des Chromophors auf Graphen ermöglichen. UV/Vis- und Fluoreszenzmessungen gaben u.a. erste Hinweise auf eine elektronische Kommunikation zwischen den beiden Hybridpartnern.