2 resultados para Bacterial Toxins
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.
Resumo:
Little is known about the bacterial ecology of evaporative salt-mining sites (salterns) of which Teguidda-n-Tessoumt at the fringe of the West-African Saharan desert in Niger is a spectacular example with its many-centuries-old and very colorful evaporation ponds. During the different enrichment steps of the salt produced as a widely traded feed supplement for cattle, animal manure is added to the crude brine, which is then desiccated and repeatedly crystallized. This study describes the dominant Bacteria and Archaea communites in the brine from the evaporation ponds and the soil from the mine, which were determined by PCR-DGGE of 16S rDNA. Correspondence analysis of the DGGE-community fingerprints revealed a change in community structure of the brine samples during the sequential evaporation steps which was, however, unaffected by the brine's pH and electric conductivity (EC). The Archaea community was dominated by a phylogenetically diverse group of methanogens, while the Bacteria community was dominated by gamma proteobacteria. Microorganisms contained in the purified salt product have the potential to be broadly disseminated and are fed to livestock across the region. In this manner, the salt mines represent an intriguing example of long-term human activity that has contributed to the continual selection, cultivation, and dissemination of cosmopolitan microorganisms.